Epilepsy and cannabidiol: a guide to treatment.

 Image result for Epileptic Disord. journal“The growing interest in cannabidiol (CBD), specifically a pure form of CBD, as a treatment for epilepsy, among other conditions, is reflected in recent changes in legislation in some countries.

Although there has been much speculation about the therapeutic value of cannabis-based products as an anti-seizure treatment for some time, it is only within the last two years that Class I evidence has been available for a pure form of CBD, based on placebo-controlled RCTs for patients with Lennox-Gastaut syndrome and Dravet syndrome.

However, just as we are beginning to understand the significance of CBD as a treatment for epilepsy, in recent years, a broad spectrum of products advertised to contain CBD has emerged on the market. The effects of these products are fundamentally dependent on the purity, preparation, and concentration of CBD and other components, and consensus and standardisation are severely lacking regarding their preparation, composition, usage and effectiveness.

This review aims to provide information to neurologists and epileptologists on the therapeutic value of CBD products, principally a purified form, in routine practice for patients with intractable epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/32096470

Cannabinoids in the Treatment of Back Pain.

Image result for neurosurgery journal“Marijuana is increasingly utilized for the treatment of multiple medical problems, including back pain, in the United States. Although there is strong preclinical evidence supporting the promise of cannabinoids in the treatment of back pain, there is a paucity of clinical data supporting their use in clinical practice. Opioids are an important medication for the treatment of acute and chronic back pain, but utilization of opioid-based regimens have likely contributed to the growing opioid epidemic. The significant risk of morbidity, mortality, and dependence secondary to opioid medications have increased the interest in nonopioid medications, including cannabinoid-based pain regimens, in treating back pain. This review will provide an overview on the pharmacology, drug delivery methods, clinical evidence, and safety considerations critical to understanding the potential role of cannabinoids in the treatment of back pain.”

https://www.ncbi.nlm.nih.gov/pubmed/32097466

https://academic.oup.com/neurosurgery/advance-article/doi/10.1093/neuros/nyz573/5758016

Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes.

Scientific Reports “Cannabis research has historically focused on the most prevalent cannabinoids. However, extracts with a broad spectrum of secondary metabolites may have increased efficacy and decreased adverse effects compared to cannabinoids in isolation.

Cannabis’s complexity contributes to the length and breadth of its historical usage, including the individual application of the leaves, stem barks, and roots, for which modern research has not fully developed its therapeutic potential. This study is the first attempt to profile secondary metabolites groups in individual plant parts comprehensively.

We profiled 14 cannabinoids, 47 terpenoids (29 monoterpenoids, 15 sesquiterpenoids, and 3 triterpenoids), 3 sterols, and 7 flavonoids in cannabis flowers, leaves, stem barks, and roots in three chemovars available. Cannabis inflorescence was characterized by cannabinoids (15.77-20.37%), terpenoids (1.28-2.14%), and flavonoids (0.07-0.14%); the leaf by cannabinoids (1.10-2.10%), terpenoids (0.13-0.28%), and flavonoids (0.34-0.44%); stem barks by sterols (0.07-0.08%) and triterpenoids (0.05-0.15%); roots by sterols (0.06-0.09%) and triterpenoids (0.13-0.24%).

This comprehensive profile of bioactive compounds can form a baseline of reference values useful for research and clinical studies to understand the “entourage effect” of cannabis as a whole, and also to rediscover therapeutic potential for each part of cannabis from their traditional use by applying modern scientific methodologies.”

https://www.ncbi.nlm.nih.gov/pubmed/32094454

https://www.nature.com/articles/s41598-020-60172-6

Anti-inflammatory Potential of Terpenes Present in Cannabis sativa L.

Go to Volume 0, Issue 0 “Cannabis sativa L. (C. sativa) contains an array of plant-derived (phyto) cannabinoids and terpenes that are predominantly located in the trichome cavity of the plant. Terpenes, aromatic organic hydrocarbons characterized for their role in plant protection/pollination, are gaining attention for their potential as novel therapeutics in many areas of biomedicine. This Viewpoint will explore the exciting recent evidence that terpenes have anti-inflammatory/antioxidant propensity by targeting inflammatory signaling mechanisms relevant to human disease. Given their anti-inflammatory properties, terpenes may contribute to the effects of current cannabinoid-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32091871

https://pubs.acs.org/doi/10.1021/acschemneuro.0c00075

“Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: focus on the actions of cannabinoids”.

European Journal of Neuroscience“Burning mouth syndrome (BMS) is a neuropathic pain disorder associated with a burning sensation on oral mucosal surfaces with frequently reported xerostomia, dysgeusia and tingling or paraesthetic sensations. However, patients present no clinically evident causative lesions. The poor classification of the disorder has resulted in a diagnostic challenge, particularly for the clinician/dentist evaluating these individuals. Major research developments have been made in the BMS field in recent years to address this concern, principally in terms of the pathophysiological mechanisms underlying the disorder, in addition to therapeutic advancements. For the purpose of this review, an update on the pathophysiological mechanisms will be discussed from a neuropathic, immunological, hormonal and psychological perspective. This review will also focus on the many therapeutic strategies that have been explored for BMS, including antidepressants/antipsychotics, nonsteroidal anti-inflammatories, hormone replacement therapies, phytotherapeutic compounds and non-pharmacological interventions, overall highlighting the lack of controlled clinical studies to support the effectiveness of such therapeutic avenues. Particular focus is given to the cannabinoid system, and the potential of cannabis-based therapeutics in managing BMS patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32091630

https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14712

Cannabis and the exocannabinoid and endocannabinoid systems. Their use and controversies.

“Cannabis (marijuana) is one of the most consumed psychoactive substances in the world. The term marijuana is of Mexican origin. The primary cannabinoids that have been studied to date include cannabidiol and delta-9-tetrahydrocannabinol, which is responsible for most cannabis physical and psychotropic effects. Recently, the endocannabinoid system was discovered, which is made up of receptors, ligands and enzymes that are widely expressed in the brain and its periphery, where they act to maintain balance in several homeostatic processes. Exogenous cannabinoids or naturally-occurring phytocannabinoids interact with the endocannabinoid system. Marijuana must be processed in a laboratory to extract tetrahydrocannabinol and leave cannabidiol, which is the product that can be marketed. Some studies suggest cannabidiol has great potential for therapeutic use as an agent with antiepileptic, analgesic, anxiolytic, antipsychotic, anti-inflammatory and neuroprotective properties; however, the findings on cannabinoids efficacy and cannabis-based medications tolerability-safety for some conditions are inconsistent. More scientific evidence is required in order to generate recommendations on the use of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/32091020

http://gacetamedicademexico.com/frame_eng.php?id=348

Decreased sensitivity in adolescent versus adult rats to the antidepressant-like effects of cannabidiol.

SpringerLink“Cannabidiol is a non-psychoactive phytocannabinoid with great therapeutic potential in diverse psychiatric disorders; however, its antidepressant potential has been mainly ascertained in adult rats.

OBJECTIVES:

To compare the antidepressant-like response induced by cannabidiol in adolescent and adult rats and the possible parallel modulation of hippocampal neurogenesis.

RESULTS:

Cannabidiol induced differential effects depending on the age and dose administered, with a decreased sensitivity observed in adolescent rats: (1) cannabidiol (30 mg/kg) decreased body weight only in adult rats; (2) cannabidiol ameliorated behavioral despair in adolescent and adult rats, but with a different dose sensitivity (10 vs. 30 mg/kg), and with a different extent (2 vs. 21 days post-treatment); (3) cannabidiol did not modulate anxiety-like behavior at any dose tested in adolescent or adult rats; and (4) cannabidiol increased sucrose intake in adult rats.

CONCLUSIONS:

Our findings support the notion that cannabidiol exerts antidepressant- and anorexigenic-like effects in adult rats and demonstrate a decreased potential when administered in adolescent rats. Moreover, since cannabidiol did not modulate hippocampal neurogenesis (cell proliferation and early neuronal survival) in adolescent or adult rats, the results revealed potential antidepressant-like effects induced by cannabidiol without the need of regulating hippocampal neurogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/32086540

https://link.springer.com/article/10.1007%2Fs00213-020-05481-4

Cannabis use in people with multiple sclerosis and spasticity: A cross-sectional analysis.

Multiple Sclerosis and Related Disorders Home

“Growing evidence supports that cannabinoids relieve MS-related spasticity but little is known about cannabis use among people with MS (PwMS) and spasticity.

 

OBJECTIVE:

To characterize cannabis use among PwMS and spasticity.

METHODS:

As part of baseline data collection for a spasticity intervention trial in Oregon, PwMS and self-reported spasticity answered questions about cannabis use.

RESULTS:

54% reported ever using cannabis and 36% currently use. 79% use multiple routes of administration, 58% use at least daily. 79% find cannabis helpful for spasticity and 26% use cannabis and prescribed oral antispasticity medications.

CONCLUSIONS:

Many PwMS and spasticity use cannabis and report it helps their spasticity.”

https://www.ncbi.nlm.nih.gov/pubmed/32086163

https://linkinghub.elsevier.com/retrieve/pii/S2211034820300857

Quality of Life, Mental Health, Personality and Patterns of Use in Self-Medicated Cannabis Users with Chronic Diseases: A 12-Month Longitudinal Study.

Phytotherapy Research“The number of patients using cannabis for therapeutic purposes is growing worldwide. While research regarding the treatment of certain diseases/disorders with cannabis and cannabinoids is also expanding, only a few longitudinal studies have assessed the mid-term impacts of medical cannabis use on psychological variables and quality of life (QoL).

The aim of the study was to assess the psychological safety and QoL of patients with chronic diseases who self-medicate with cannabis over time.

We recruited patients with various chronic diseases who use cannabis and collected data regarding patterns of cannabis use as well as mental health, personality and QoL. Participants were followed-up at baseline, 4, 8 and 12 months. Hair analysis was conducted to confirm the presence of cannabinoids. Personality assessment showed a consistent decrease in self-transcendence and self-directedness scores.

Neither cognitive nor psychopathological deterioration was found. There were also no variations in QoL. Mid-term use of medical cannabis seems to show adequate tolerability regarding cognitive and psychopathological abilities, and it may help patients with chronic diseases to maintain an acceptable QoL.”

https://www.ncbi.nlm.nih.gov/pubmed/32083789

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6639

Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia.

ijms-logo“In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition.

The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS).

This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia-ischemia (HI) in fetal lambs.

Hypoxic-ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress.

Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.”

https://www.ncbi.nlm.nih.gov/pubmed/32074976

https://www.mdpi.com/1422-0067/21/4/1283

“Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury.”   https://www.ncbi.nlm.nih.gov/pubmed/21788999