Can cannabinoids be a potential therapeutic tool in amyotrophic lateral sclerosis?

Image result for Neural Regeneration Research

“Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motor neuron system. Over the last years, a growing interest was aimed to discovery new innovative and safer therapeutic approaches in the ALS treatment. In this context, the bioactive compounds of Cannabis sativa have shown antioxidant, anti-inflammatory and neuroprotective effects in preclinical models of central nervous system disease. However, most of the studies proving the ability of cannabinoids in delay disease progression and prolong survival in ALS were performed in animal model, whereas the few clinical trials that investigated cannabinoids-based medicines were focused only on the alleviation of ALS-related symptoms, not on the control of disease progression. The aim of this report was to provide a short but important overview of evidences that are useful to better characterize the efficacy as well as the molecular pathways modulated by cannabinoids.”  https://www.ncbi.nlm.nih.gov/pubmed/28197175

“The endocannabinoid system in amyotrophic lateral sclerosis. There is increasing evidence that cannabinoids and manipulation of the endocannabinoid system may have therapeutic value in ALS. Cannabinoids exert anti-glutamatergic and anti-inflammatory actions through activation of the CB(1) and CB(2) receptors. The ability of cannabinoids to target multiple neurotoxic pathways in different cell populations may increase their therapeutic potential in the treatment of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/18781981

“Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis (ALS). Our data suggest that cannabinoid CB1 receptors might be potential therapeutic targets for this dramatic disease.” http://www.ncbi.nlm.nih.gov/pubmed/19452308

“Cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Cannabinoid CB2 receptor-selective compounds may be the basis for developing new drugs for the treatment of ALS and other chronic neurodegenerative diseases.” http://www.ncbi.nlm.nih.gov/pubmed/16781706

“Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. The cannabinoid receptor system has the potential to reduce both excitotoxic and oxidative cell damage. Here we report that treatment with Delta(9)-tetrahydrocannabinol (Delta(9)-THC) was effective. As Delta(9)-THC is well tolerated, it and other cannabinoids may prove to be novel therapeutic targets for the treatment of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/15204022

“Δ9-Tetrahydrocannabinol (Δ9-THC) is the main psychoactive constituent in the plant Cannabis sativa (marijuana) and produces its effects by activation of cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) cannabinoid receptors. Administration of the non-selective partial cannabinoid agonists Δ9-THC or cannabinol are successful in delaying motor impairment and prolonging survival in mice after the onset of symptoms. Collectively, these studies suggest that cannabinoid receptors might serve as novel therapeutic targets for ALS drug development. CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819701/

“Cannabinoids exert neuroprotective and symptomatic effects in amyotrophic lateral sclerosis (ALS)” http://www.ncbi.nlm.nih.gov/pubmed/22594565

“Therapeutic options for amyotrophic lateral sclerosis (ALS) remain limited. Evidence suggests that cannabinoids, the bioactive ingredients of marijuana (Cannabis sativa) might have some therapeutic benefit in this disease. We found that this treatment significantly delays disease onset. Cannabinoids might be useful in ameliorating symptoms in ALS.” http://www.ncbi.nlm.nih.gov/pubmed/16183560

“Marijuana is a substance with many properties that may be applicable to the management of amyotrophic lateral sclerosis (ALS). These include analgesia, muscle relaxation, bronchodilation, saliva reduction, appetite stimulation, and sleep induction. In addition, marijuana has now been shown to have strong antioxidative and neuroprotective effects. Marijuana should be considered in the pharmacological management of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/11467101

“Ideally, a multidrug regimen would be required to comprehensively address the known pathophysiology of ALS. REMARKABLY, cannabis appears to have activity in all of those areas. Cannabis has powerful antioxidative, anti-inflammatory, and neuroprotective effects. Cannabis might significantly slow the progression of ALS, potentially extending life expectancy and substantially reducing the overall burden of the disease.” http://www.ncbi.nlm.nih.gov/pubmed/20439484

“In light of the above findings, there is a valid rationale to propose the use of cannabinoid compounds in the pharmacological management of ALS patients. Cannabinoids indeed are able to delay ALS progression and prolong survival.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270417/

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.

Image result for Epilepsy Behav

“The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy.

Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings.

We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges.

Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system.

Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported.

Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies.

However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies.

The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy.

Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood.

Therefore, in light of these paradigm-changing clinical events, the present review’s findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/28190698

Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism.

Image result for Scientific Reports

“The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC).

CB expression on human normal and BC specimens was tested by immunohistochemistry.

Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling.

CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour.

Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism.

Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements.

CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (-50 ± 3%) and sphingosine 1-phosphate (S1P, -40 ± 4%), which ended up to reduction in cell motility (-46 ± 5%) with inhibition of p-SRC.

CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility.

CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility.”

https://www.ncbi.nlm.nih.gov/pubmed/28191815

Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress.

Image result for Brain Res Bull.

“Social isolation stress (SIS) paradigm is a chronic stress procedure able to induce profound behavioral and neurochemical changes in rodents and evokes depressive and anxiety-like behaviors.

Recent studies demonstrated that the cannabinoid system plays a key role in behavioral abnormalities such as depression through different pathways; however, there is no evidence showing a relation between SIS and the cannabinoid system.

This study investigated the role of the cannabinoid system in depressive-like behavior and anxiety-like behavior of IC animals.

Our findings suggest that the cannabinoid system is involved in depressive-like behaviors induced by SIS.

We showed that activation of cannabinoid receptors (type 1 and 2) could mitigate depression-like behavior induced by SIS in a mouse model.”

https://www.ncbi.nlm.nih.gov/pubmed/28161196

The involvement of cannabinoids and mTOR in the reconsolidation of an emotional memory in the hippocampal-amygdala-insular circuit.

Image result for european neuropsychopharmacology

“Memory reconsolidation is the process in which reactivated long-term memory becomes transiently sensitive to amnesic agents.

We evaluated the ability of post reactivation administration of the mTOR inhibitor rapamycin, separately and in combination with the cannabinoid CB1/2 receptor agonist WIN55,212-2 (WIN), given systemically or specifically into the hippocampal CA1 area, basolateral amygdala (BLA) or insular cortex (IC), to reduce inhibitory avoidance fear in rats.

Taken together, the results suggest that rapamycin or a combined treatment that involves blocking mTOR and activating cannabinoids may be a promising pharmacological approach for the attenuation of reactivated emotional memories, and thus, it could represent a potential treatment strategy for disorders associated with traumatic memories.”

https://www.ncbi.nlm.nih.gov/pubmed/28131675

Molecular Targets of the Phytocannabinoids: A Complex Picture.

Image result for UNC Greensboro

“For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.

These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L.

To date, over 120 phytocannabinoids have been isolated from Cannabis.

For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets.

This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.”

Molecular Pharmacology of Phytocannabinoids.

Related image

“Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years.

The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content.

Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2.

Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis.

This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene.

The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond.

The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects.

The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.”

https://www.ncbi.nlm.nih.gov/pubmed/28120231

Endocannabinoid 2-arachidonoylglycerol protects inflammatory insults from sulfur dioxide inhalation via cannabinoid receptors in the brain.

Image result for J Environ Sci (China).

“Sulfur dioxide (SO2) pollution in the atmospheric environment causes brain inflammatory insult and inflammatory-related microvasculature dysfunction. However, there are currently no effective medications targeting the harmful outcomes from chemical inhalation.

Endocannabinoids (eCBs) are involved in neuronal protection against inflammation-induced neuronal injury. The 2-arachidonoylglycerol (2-AG), the most abundant eCBs and a full agonist for cannabinoid receptors (CB1 and CB2), is also capable of suppressing proinflammatory stimuli and improving microvasculature dysfunction.

Here, we indicated that endogenous 2-AG protected against neuroinflammation in response to SO2 inhalation by inhibiting the activation of microglia and astrocytes and attenuating the overexpression of inflammatory cytokines, including tumor necrosis factor alpha (TNF-a), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS).

In addition, endogenous 2-AG prevented cerebral vasculature dysfunction following SO2 inhalation by inhibiting endothelin 1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, elevating endothelial nitric oxide synthase (eNOS) level, and restoring the imbalance between thromboxane A2 (TXA2) and prostaglandin I2 (PGI2).

In addition, the action of endogenous 2-AG on the suppression of inflammatory insult and inflammatory-related microvasculature dysfunction appeared to be mainly mediated by CB1 and CB2 receptors.

Our results provided a mechanistic basis for the development of new therapeutic approaches for protecting brain injuries from SO2 inhalation.”

https://www.ncbi.nlm.nih.gov/pubmed/28115138

Cannabinoids – a new weapon against cancer?

Image result for Postepy Hig Med Dosw (Online).

“Cannabis has been cultivated by man since Neolithic times. It was used, among others for fiber and rope production, recreational purposes and as an excellent therapeutic agent.

The isolation and characterization of the structure of one of the main active ingredients of cannabis – Δ9 – tetrahydrocannabinol as well the discovery of its cannabinoid binding receptors CB1 and CB2, has been a milestone in the study of the possibilities of the uses of Cannabis sativa and related products in modern medicine.

Many scientific studies indicate the potential use of cannabinoids in the fight against cancer.

Experiments carried out on cell lines in vitro and on animal models in vivo have shown that phytocannabinoids, endocannabinoids, synthetic cannabinoids and their analogues can lead to inhibition of the growth of many tumor types, exerting cytostatic and cytotoxic neoplastic effect on cells thereby negatively influencing neo-angiogenesis and the ability of cells to metastasize.

The main molecular mechanism leading to inhibition of proliferation of cancer cells by cannabinoids is apoptosis. Studies have shown, however, that the process of apoptosis in cells, treated with recannabinoids, is a consequence of induction of endoplasmic reticulum stress and autophagy. On the other hand, in the cellular context and dosage dependence, cannabinoids may enhance the proliferation of tumor cells by suppressing the immune system or by activating mitogenic factors.

Leading from this there is a an obvious need to further explore cannabinoid associated molecular pathways making it possible to develop safe therapeutic drug agents for patients in the future.”

Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease.

Image result for Front Cell Neurosci.

“The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors together with the discovery of their endogenous ligands in the late 80s and early 90s, resulted in a major effort aimed at understanding the mechanisms and physiological roles of the endocannabinoid system (ECS). Due to its expression and localization in the central nervous system (CNS), the CB1 receptor together with its endogenous ligands (endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation, has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others. In this review, we will provide a general overview of the ECS with emphasis on the CB1 receptor in health and disease. We will describe our current understanding of the complex aspects of receptor signaling and trafficking, including the non-canonical signaling pathways such as those mediated by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will highlight some of the disorders in which CB1 receptors have been implicated. Significant knowledge has been achieved over the last 30 years. However, much more research is still needed to fully understand the complex roles of the ECS, particularly in vivo and to unlock its true potential as a source of therapeutic targets.”

https://www.ncbi.nlm.nih.gov/pubmed/28101004