Cannabinoid receptor ligand bias: implications in the central nervous system.

 

Image result for Curr Opin Pharmacol

“The G protein-coupled cannabinoid receptors CB1, CB2, GPR18, and GPR55 regulate neurotransmission, pain, and inflammation and have been intensively investigated as potential drug targets. Each of these GPCRs is coupled to multiple effector proteins mediating divergent cellular signals. The ligand bias of cannabinoid-targeted compounds is only beginning to be quantified. Research into cannabinoid bias is now revealing correlations between bias in cell culture and functional outcomes in vivo. We present an example study of cannabinoid bias in the context of Huntington disease. In future, an understanding of cannabinoid receptor structure and quantification of ligand bias will optimize drug selection matched to patient population and disease.”

https://www.ncbi.nlm.nih.gov/pubmed/27835801

Novel indole-based compounds that differentiate alkylindole-sensitive receptors from cannabinoid receptors and microtubules: Characterization of their activity on glioma cell migration.

 

Image result for Pharmacol Res.

“Indole-based compounds, such as the alkyl-indole (AI) compound WIN55212-2, activate the cannabinoid receptors, CB1 and CB2, two well-characterized G protein-coupled receptors (GPCR). Reports indicate that several indole-based cannabinoid agonists, including WIN55212-2, lack selectivity and interact with at least two additional targets: AI-sensitive GPCRs and microtubules. Studying how indole-based compounds modulate the activity of these 4 targets has been difficult as selective chemical tools were not available. Here we report the pharmacological characterization of six newly-developed indole-based compounds (ST-11, ST-23, ST-25, ST-29, ST-47 and ST-48) that exhibit distinct binding affinities at AI-sensitive receptors, cannabinoid CB1 and CB2 receptors and the colchicine site of tubulin. Several compounds exhibit some level of selectivity for AI-sensitive receptors, including ST-11 that binds AI-sensitive receptors with a Kd of 52nM and appears to have a weaker affinity for the colchicine site of tubulin (Kd=3.2μM) and does not bind CB1/CB2 receptors. Leveraging these characteristics, we show that activation of AI-sensitive receptors with ST-11 inhibits both the basal and stimulated migration of the Delayed Brain Tumor (DBT) mouse glioma cell line. Our study describes a new series of indole-based compounds that enable the pharmacological and functional differentiation of alkylindole-sensitive receptors from cannabinoidreceptors and microtubules.”

https://www.ncbi.nlm.nih.gov/pubmed/27832960

Targeting the Endocannabinoid System in Psychiatric Illness.

Image result for J Clin Psychopharmacol

“Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning.

The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis.

The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder.

Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design.

The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.”

Endogenous cannabinoid system alterations and their role in epileptogenesis after brain injury in rat.

Image result for epilepsy research journal

“Post-traumatic epilepsy (PTE) is one of the most common complications resulting from brain injury, however, antiepileptic drugs usually fail to prevent it.

Several lines of evidence have demonstrated that the endogenous cannabinoid system (ECS) plays a pivotal role during epileptogenesis in several animal models.

A recent study has shown that a cannabinoid type 1 (CB1) receptor antagonist could suppress long-term neuron hyperexcitability after brain injury, but the underlying mechanisms remain largely unknown.

In this study, we first analyzed the dynamic expression of different components of the ECS at various time points after brain injury in rats. Then, we conducted a 12-month-long session of behavioral monitoring after the brain injury, and based on the results, the rats were divided into a PTE group and a non-PTE group. Finally, the changes in the ECS between the two groups were compared.

We found that the ECS exhibited a biphasic alteration after brain injury; the expression of the CB1 receptor and 2-arachidonoylglycerol (2-AG) in the PTE group was significantly higher than that of the non-PTE group 12 months after traumatic brain injury.

Our preliminary results indicated that the ECS might be involved in post-traumatic epileptogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/27810514

Exocannabinoids effect on in vitro bovine oocyte maturation via activation of AKT and ERK1/2.

Image result for reproduction journal

“Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoidreceptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality.”

https://www.ncbi.nlm.nih.gov/pubmed/27798282

Role of cannabis in digestive disorders.

Image result for European Journal of Gastroenterology & Hepatology

“Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids.

Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent.

Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor.

There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract.

Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea.

The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn’s disease), irritable bowel syndrome, and secretion and motility-related disorders.

The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain.

Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.”

https://www.ncbi.nlm.nih.gov/pubmed/27792038

Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review).

Image result for Int J Mol Med.

“The physiological and pathophysiological roles of sex hormones have been well documented and the modulation of their effects is applicable in many current treatments.

On the other hand, the physiological role of endocannabinoids is not yet clearly understood and the endocannabinoid system is considered a relatively new therapeutic target.

The physiological association between sex hormones and cannabinoids has been investigated in several studies; however, its involvement in the pathophysiology of common human diseases has been studied separately.

Herein, we present the first systematic review of molecular pathways that are influenced by both the cannabinoids and sex hormones, including adenylate cyclase and protein kinase A, epidermal growth factor receptor, cyclic adenosine monophosphate response element-binding protein, vascular endothelial growth factor, proto-oncogene serine/threonine-protein kinase, mitogen-activated protein kinase, phosphatidylinositol-4,5-bisphosphate 3-kinase, C-Jun N-terminal kinase and extracellular-signal-regulated kinases 1/2.

Most of these influence cell proliferative activity.

Better insight into this association may prove to be beneficial for the development of novel pharmacological treatment strategies for many common diseases, including breast cancer, endometrial cancer, prostate cancer, osteoporosis and atherosclerosis.

The associations between cannabinoids, estrogens and androgens under these conditions are also presented and the molecular interactions are highlighted.”

Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors.

Image result for J Med Chem

“Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anti-cancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2), or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation.

FAEs and ECs are synthesized by a series of endogenous enzymes, including N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), or phospholipase C (PLC), and their metabolism is mediated by several metabolic enzymes, including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), N-acylethanolamine acid amidase (NAAA), or cyclooxygenase-2 (COX-2).

Over the last decades, increasing the concentration of FAEs and ECs through the inhibition of degrading enzymes has been considered to be a viable therapeutic approach to enhance their anti-nociceptive and anti-inflammatory effects, as well as protecting the nervous system.”

ENDOCANNABINOIDS AND SLEEP.

Image result for Neuroscience & Biobehavioral Reviews

“Sleep is regulated by several brain structures, neurotransmitters and neuromodulators.

Endocannabinoids (eCBs) are a group of lipids with modulatory activity in the brain and bind mainly to cannabinoid receptors CB1R and CB2R, thereby modulating several brain functions, (memory, mood, food intake, pain perception).

Oleoylethanolamide and palmitoylethanolamide belong to the N-acylethanolamides (NAEs) family, another type of active endogenous lipids. They bind to the peroxisome proliferator-activated receptor α but not to CB1R, thereby modulating food satiety, inflammation and pain.

Both eCBs and NAEs seem to be regulating the sleep-wake cycle.

Our objective is to analyze the experimental evidence published in the literature and to discuss if eCBs and NAEs are actually sleep modulators.

Studies suggested 1. eCBs and NAEs are under circadian control. 2. NAEs promote wake. 3. eCBs promote non-rapid-eye movement. 4. eCBs also promote rapid-eye-movement sleep by interacting with melanin-concentrating hormone neurons in the lateral hypothalamus. 5. The pharmacological blockade of the CB1R reduces sleep while increasing wake. 6. eCBs restore sleep in a model of insomnia in rats.”

https://www.ncbi.nlm.nih.gov/pubmed/27756691

Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2′-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice.

Image result for Eur J Pharmacol.

“We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy.

PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures.

PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors.

In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.”

https://www.ncbi.nlm.nih.gov/pubmed/27663280