Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells.

 

“Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina but the role of endocannabinoids in vision is not fully understood. Here we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity.

Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation.

Using a dot avoidance assay in freely swimming Xenopus tadpoles we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low light conditions.

These results highlight a role for endocannabinoids in vision, and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl regulation.”

http://www.ncbi.nlm.nih.gov/pubmed/27501334

Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages.

“Historical and scientific evidence suggests that Cannabis use has immunomodulatory and anti-inflammatory effects.

We have here investigated the effect of the non-psychotropic phytocannabinoid Δ9-tetrahydrocannabivarin (THCV) and of a Cannabis sativa extract with high (64.8%) content in THCV (THCV-BDS) on nitric oxide (NO) production, and on cannabinoid and transient receptor potential (TRP) channel expression in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages.

THCV-BDS and THCV exhibited similar affinity in radioligand binding assays for CB1 and CB2 receptors, and inhibited, via CB2 but not CB1 cannabinoid receptors, nitrite production evoked by LPS in peritoneal macrophages.

THCV down-regulated the over-expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin 1β (IL-1β) proteins induced by LPS.

Furthermore, THCV counteracted LPS-induced up-regulation of CB1 receptors, without affecting the changes in CB2, TRPV2 or TRPV4 mRNA expression caused by LPS. Other TRP channels, namely, TRPA1, TRPV1, TRPV3 and TRPM8 were poorly expressed or undetectable in both unstimulated and LPS-challenged macrophages.

It is concluded that THCV – via CB2 receptor activation – inhibits nitrite production in macrophages. The effect of this phytocannabinoid was associated with a down-regulation of CB1, but not CB2 or TRP channel mRNA expression.”

http://www.ncbi.nlm.nih.gov/pubmed/27498155

Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids.

“This study has implications for developing new therapeutics for the treatment of cancer, pain, and metabolic disorders.

GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids.

In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents.

Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands.

Here, we report that the little investigated cannabis constituents CBDV, CBGA, and CBGV are potent inhibitors of LPI-induced GPR55 signaling.

The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI.

Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV.

These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/

“Lysophosphatidylinositol (LPI) is a bioactive lipid generated by phospholipase A2 which is believed to play an important role in several diseases.”  http://www.ncbi.nlm.nih.gov/pubmed/22285325

 “The putative cannabinoid receptor GPR55 promotes cancer cell proliferation.  In this issue of Oncogene, two groups demonstrated that GPR55 is expressed in various cancer types in an aggressiveness-related manner, suggesting a novel cancer biomarker and a potential therapeutic target.” http://www.ncbi.nlm.nih.gov/pubmed/21057532
“The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. These findings reveal the importance of GPR55 in human cancer, and suggest that it could constitute a new biomarker and therapeutic target in oncology.” http://www.ncbi.nlm.nih.gov/pubmed/20818416
“The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. These findings may have important implications for LPI as a novel cancer biomarker and for its receptor GPR55 as a potential therapeutic target.”  http://www.ncbi.nlm.nih.gov/pubmed/20838378
“L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Evidence points to a role of L-α-lysophosphatidylinositol (LPI) in cancer.”  http://www.ncbi.nlm.nih.gov/pubmed/21367464

Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55.

“The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors.

We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the monkey retina, suggesting its possible role in scotopic vision.

These results support the hypothesis that GPR55 plays an instrumental role in mediating scotopic vision.”

http://www.ncbi.nlm.nih.gov/pubmed/27485069

Endocannabinoid system as a regulator of tumor cell malignancy – biological pathways and clinical significance.

“The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids.

To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB.

Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome.

Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules.

It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared.

This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology.

We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival.

A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27486335

Endocannabinoid system: Role in depression, reward and pain control (Review).

 

“Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society.

In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoidreceptor type 1 (CB1) and CB2.

Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively.

These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes.

Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain.

Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain.

Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.”

http://www.ncbi.nlm.nih.gov/pubmed/27484193

Peripherally selective cannabinoid 1 receptor (CB1R) agonists for the treatment of neuropathic pain

 Journal of Medicinal Chemistry

“Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ~0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene’s anti-allodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain.”

http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00516

Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies

“Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes.

Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids.

Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.

Cannabinoids were originally derived from the cannabis plant, Cannabis sativa, which has been used medicinally and recreationally for many years because of its anti-inflammatory, analgesic, and psychoactive properties.”

http://online.liebertpub.com/doi/full/10.1089/can.2015.0001

Endocannabinoids: new targets for drug development.

“The possible therapeutic use of marijuana s active principles, the cannabinoids, is currently being debated.

It is now known that these substances exert several of their pharmacological actions by activating specific cell membrane receptors, the CB1 and CB2 cannabinoid receptor subtypes.

This knowledge led to the design of synthetic cannabinoid agonists and antagonists with high therapeutic potential.

The recent discovery of the endocannabinoids, i.e. endogenous metabolites capable of activating the cannabinoid receptors, and the understanding of the molecular mechanisms leading to their biosynthesis and inactivation, opened a new era in research on the pharmaceutical applications of cannabinoids.

Ongoing studies on the pathological and physiological conditions regulating the tissue levels of endocannabinoids, and on the pharmacological activity of these compounds and their derivatives, may provide a lead for the development of new drugs for the treatment of nervous and immune disorders, cardiovascular diseases, pain, inflammation and cancer.

These studies are reviewed in this article with special emphasis on the chemical features that determine the interaction of endocannabinoids with the proteins mediating their activity and degradation.”

http://www.ncbi.nlm.nih.gov/pubmed/10903398

Cannabinoids biology: the search for new therapeutic targets.

“Cannabinoids, in the form of marijuana plant extracts, have been used for thousands of years for a wide variety of medical conditions, ranging from general malaise and mood disorders to more specific ailments, such as pain, nausea, and muscle spasms.

The discovery of tetrahydrocannabinol, the active principal in marijuana, and the identification and cloning of two cannabinoid receptors (i.e., CB1 and CB2) has subsequently led to biomedical appreciation for a family of endocannabinoid lipid transmitters.

The biosynthesis and catabolism of the endocannabinoids and growing knowledge of their broad physiological roles are providing insight into potentially novel therapeutic targets.

Compounds directed at one or more of these targets may allow for cannabinoid-based therapeutics with limited side effects and abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/16809476