The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases.

 ijms-logo“Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/31771129

https://www.mdpi.com/1422-0067/20/23/5875

The curative effect of a cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Publication cover image“As we learn more about the endocannabinoid system (ECS), our understanding and grasp of the system’s ubiquitous presence is expanding. In light of this, there is also a growing body of evidence for the therapeutic potential of ECS modulation in a range of clinical situations. Strategies include for example manipulation of the Cannabinoid 1 (CB1) receptor, mostly in terms of CNS processes, and activation of the Cannabinoid 2 (CB2) receptor as anti-inflammatory target.”

https://www.ncbi.nlm.nih.gov/pubmed/31774568

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12524

Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice.

Publication cover image“The endocannabinoid system (ECS) is comprised of cannabinoid receptors 1 and 2 (CB1R and CB2R), endogenous ligands, and regulatory enzymes, and serves to regulate several important physiological functions throughout the brain and body.

Recent evidence suggests that the ECS may be a promising target for the treatment of epilepsy, including epilepsy subtypes that arise from mutations in the voltage-gated sodium channel SCN1A.

The objective of this study was to explore the effects of modulating CB2R activity on seizure susceptibility.

Our results demonstrate that reduced CB2R activity is associated with increased seizure susceptibility. CB2Rs might therefore provide a therapeutic target for the treatment of some forms of epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31758544

https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16388

Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy.

Publication cover image“Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1 and CB2).

The objective of this study was to determine efficacy and mechanism of CB2 activation on cyclophosphamide (CYP)-induced cystitis in vivo.

CONCLUSIONS:

Activation of CB2 decreased severity of CYP-induced cystitis and ameliorated bladder inflammation. CB2 activation is protective in cystitis through the activation of autophagy and AMPK-mTOR pathway may be involved in the initiation of autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/31729056

https://onlinelibrary.wiley.com/doi/abs/10.1002/nau.24205

Δ9-THC and related cannabinoids suppress substance P- induced neurokinin NK1-receptor-mediated vomiting via activation of cannabinoid CB1 receptor.

European Journal of Pharmacology

“Δ9-THC suppresses cisplatin-induced vomiting through activation of cannabinoid CB1 receptors.

Cisplatin-evoked emesis is predominantly due to release of serotonin and substance P (SP) in the gut and the brainstem which subsequently stimulate their corresponding 5-HT3-and neurokinin NK1-receptors to induce vomiting. Δ9-THC can inhibit vomiting caused either by the serotonin precursor 5-HTP, or the 5-HT3 receptor selective agonist, 2-methyserotonin.

In the current study, we explored whether Δ9-THC and related CB1/CB2 receptor agonists (WIN55,212-2 and CP55,940) inhibit vomiting evoked by SP (50 mg/kg, i.p.) or the NK1 receptor selective agonist GR73632 (5 mg/kg, i.p.). Behavioral methods were employed to determine the antiemetic efficacy of cannabinoids in least shrews.

Our results showed that administration of varying doses of Δ9-THC (i.p. or s.c.), WIN55,212-2 (i.p.), or CP55,940 (i.p.) caused significant suppression of SP-evoked vomiting in a dose-dependent manner. When tested against GR73632, Δ9-THC also dose-dependently reduced the evoked emesis.

The antiemetic effect of Δ9-THC against SP-induced vomiting was prevented by low non-emetic doses of the CB1 receptor inverse-agonist/antagonist SR141716A (<10 mg/kg). We also found that the NK1 receptor antagonist netupitant can significantly suppress vomiting caused by a large emetic dose of SR141716A (20 mg/kg).

In sum, Δ9-THC and related cannabinoids suppress vomiting evoked by the nonselective (SP) and selective (GR73632) neurokinin NK1 receptor agonists via stimulation of cannabinoid CB1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/31738934

https://www.sciencedirect.com/science/article/pii/S0014299919307587?via%3Dihub

Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson’s disease.

Neuropharmacology

“Medications that improve pain threshold can be useful in the pharmacotherapy of Parkinson’s disease (PD). Pain is a prevalent PD’s non-motor symptom with a higher prevalence of analgesic drugs prescription for patients. However, specific therapy for PD-related pain are not available.

Since the endocannabinoid system is expressed extensively in different levels of pain pathway, drugs designed to target this system have promising therapeutic potential in the modulation of pain. Thus, we examined the effects of the 6-hydroxydopamine- induced PD on nociceptive responses of mice and the influence of cannabidiol (CBD) on 6-hydroxydopamine-induced nociception.

Further, we investigated the pathway involved in the analgesic effect of the CBD through the co-administration with a fatty acid amide hydrolase (FAAH) inhibitor, increasing the endogenous anandamide levels, and possible targets from anandamide, i.e., the cannabinoid receptors subtype 1 and 2 (CB1 and CB2) and the transient receptor potential vanilloid type 1 (TRPV1).

We report that 6-hydroxydopamine- induced parkinsonism decreases the thermal and mechanical nociceptive threshold, whereas CBD (acute and chronic treatment) reduces this hyperalgesia and allodynia evoked by 6-hydroxydopamine. Moreover, ineffective doses of either FAAH inhibitor or TRPV1 receptor antagonist potentialized the CBD-evoked antinociception while an inverse agonist of the CB1 and CB2 receptor prevented the antinociceptive effect of the CBD.

Altogether, these results indicate that CBD can be a useful drug to prevent the parkinsonism-induced nociceptive threshold reduction. They also suggest that CB1 and TRPV1 receptors are important for CBD-induced analgesia and that CBD could produce these analgesic effects increasing endogenous anandamide levels.”

https://www.ncbi.nlm.nih.gov/pubmed/31706993

“The CBD treatment decreases hyperalgesia and allodynia in experimental parkinsonism.”

https://www.sciencedirect.com/science/article/pii/S0028390819303703?via%3Dihub

Image 1

Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion.

Prostaglandins, Leukotrienes and Essential Fatty Acids Home“The anticancer effects of the omega-3 long chain polyunsaturated fatty acids (LCPUFA), EPA and DHA may be due, at least in part, to conversion to their respective endocannabinoid derivatives, eicosapentaenoyl-ethanolamine (EPEA) and docosahexaenoyl-ethanolamine (DHEA).

Here, the effects of EPEA and DHEA and their parent compounds, EPA and DHA, on breast cancer (BC) cell function was examined. EPEA and DHEA exhibited greater anti-cancer effects than EPA and DHA in two BC cells (MCF-7 and MDA-MB-231) whilst displaying no effect in non-malignant breast cells (MCF-10a).

Both BC lines expressed CB1/2 receptors that were responsible, at least partly, for the observed anti-proliferative effects of the omega-3 endocannabinoids as determined by receptor antagonism studies. Additionally, major signalling mechanisms elicited by these CB ligands included altered phosphorylation of p38-MAPK, JNK, and ERK proteins.

Both LCPUFAs and their endocannabinoids attenuated the expression of signal proteins in BC cells, albeit to different extents depending on cell type and lipid effectors. These signal proteins are implicated in apoptosis and attenuation of BC cell migration and invasiveness.

Furthermore, only DHA reduced in vitro MDA-MB-231 migration whereas both LCPUFAs and their endocannabinoids significantly inhibited invasiveness. This finding was consistent with reduced integrin β3 expression observed with all treatments and reduced MMP-1 and VEGF with DHA treatment.

Attenuation of cell viability, migration and invasion of malignant cells indicates a potential adjunct nutritional therapeutic use of these LCPUFAs and/or their endocannabinoids in treatment of breast cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31679810

https://www.plefa.com/article/S0952-3278(19)30112-7/fulltext

Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia.

Neurobiology of Disease“L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson’s disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs.

Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs.

Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs.”

https://www.ncbi.nlm.nih.gov/pubmed/31669673

“Collectively, our findings suggest CB2 agonists offer a putative target to treat LIDs, with efficacy comparable to the frontline treatment amantadine. Our study suggests that targeting glial function may be an important strategy for developing therapies for treating LIDs, a major unmet need for PD patients.”

https://www.sciencedirect.com/science/article/pii/S0969996119303213?via%3Dihub

Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis.

cells-logo“Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31653030

https://www.mdpi.com/2073-4409/8/11/1311

A time-dependent contribution of hippocampal CB1, CB2, and PPARγ receptors to cannabidiol-induced disruption of fear memory consolidation.

Publication cover image“Preclinical studies have shown that cannabidiol (CBD) mitigates fear memories by facilitating their extinction or interfering with their generalization and reconsolidation. The brain regions and mechanisms underlying these effects, and their temporal window, are still poorly understood. The present paper aimed at investigating related questions in the dorsal hippocampus (DH) during contextual fear consolidation.

KEY RESULTS:

CBD impaired memory consolidation when given immediately or 1 h after fear conditioning, but not after 3 h. The DH Arc expression was reduced by systemic CBD treatment in both cases. Immediately after fear conditioning, the CBD effect was abolished by CB1 or CB2 receptor blockade, partly reduced by 5-HT1A or A2A antagonism, and remained unchanged after antagonism of PPARγ receptors. 1 h after fear conditioning, the CBD effect was only prevented by PPARγ receptor antagonism. Besides, the FAAH inhibition impaired memory consolidation when URB597 was infused immediately, but not 1 hour after fear conditioning.

CONCLUSIONS AND IMPLICATIONS:

CBD disrupts memory consolidation up to 1 h after fear conditioning, allowing an extended window of opportunity to mitigate aversive memories after their acquisition. The results suggest time-dependent participation of DH anandamide, CB1, CB2, and PPARγ receptors in this process.”

https://www.ncbi.nlm.nih.gov/pubmed/31648363

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14895