Cannabinoid CB1 Receptor Antagonist Rimonabant Decreases Levels of Markers of Organ Dysfunction and Alters Vascular Reactivity in Aortic Vessels in Late Sepsis in Rats.

“Sepsis is a life-threatening condition with high mortality rates that is caused by dysregulation of the host response to infection. We previously showed that treatment with the cannabinoid CB1 receptor antagonist rimonabant reduced mortality rates in animals with sepsis that was induced by cecal ligation and puncture (CLP). This improvement in the survival rate appeared to be related to an increase in arginine vasopressin (AVP) levels 12 h after CLP.

The present study investigated the effects of rimonabant on organ dysfunction, hematologic parameters, and vascular reactivity in male Wistar rats with sepsis induced by CLP. Intraperitoneal treatment with rimonabant (10 mg/kg, 4 h after CLP) abolished the increase in the plasma levels of lactate, lactate dehydrogenase, glucose, and creatinine kinase MB without altering hematological parameters (i.e., leukopenia and a reduction of platelet counts). CLP increased plasma levels of nitrate/nitrite (NOx) and induced vasoconstriction in the tail artery. The treatment of CLP rats with rimonabant did not alter NOx production but reduced the vasoconstriction. Rimonabant also attenuated the hyperreactivity to AVP induced by CLP without affecting hyporesponsiveness to phenylephrine in aortic rings.

These results suggest that rimonabant reduces organ dysfunction during sepsis, and this effect may be related to AVP signaling in blood vessels. This effect may have contributed to the higher survival rate in rimonabant-treated septic animals.”

Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure.

“It has been known for nearly 50 years that cannabis and the psychoactive constituent Δ9-tetrahydrocannabinol (THC) reduce intraocular pressure (IOP).

Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a major cause of blindness.

THC likely acts via one of the known cannabinoid-related receptors (CB1, CB2, GPR18, GPR119, GPR55) but this has never been determined explicitly.

Cannabidiol (CBD) is a second major constituent of cannabis that has been found to be without effect on IOP in most studies.

RESULTS:

We now report that a single topical application of THC lowered IOP substantially (∼28%) for 8 hours in male mice. This effect is due to combined activation of CB1 and GPR18 receptors each of which has been shown to lower ocular pressure when activated. We also found that the effect was sex-dependent, being stronger in male mice, and that mRNA levels of CB1 and GPR18 were higher in males. Far from inactive, CBD was found to have two opposing effects on ocular pressure, one of which involved antagonism of tonic signaling.

CBD prevents THC from lowering ocular pressure.

CONCLUSIONS:

We conclude that THC lowers IOP by activating two receptors-CB1 and GPR18-but in a sex-dependent manner. CBD, contrary to expectation, has two opposing effects on IOP and can interfere with the effects of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/30550613

https://iovs.arvojournals.org/article.aspx?articleid=2718702

Cannabinoid-1 Receptor Antagonism Improves Glycemic Control and Increases Energy Expenditure via Sirt1/mTORC2 and AMPK Signaling.

Publication cover image

“Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure.

Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver.

CONCLUSION: peripheral CB1 R blockade in obese mice improves glycemic control via the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation via LKB1/AMPK signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/30506571

https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.30364

Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans.

Image result for frontiers in molecular biosciences

“Endocannabinoid peptides, or “pepcans,” are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator. These findings open the way to structure-driven design of selective peptide modulators of CB1.”

https://www.ncbi.nlm.nih.gov/pubmed/30505835

https://www.frontiersin.org/articles/10.3389/fmolb.2018.00100/full

Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance.

Physiology & Behavior

“Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance. Despite no significant differences in body weight among groups, chronic exposure to low-level LPS altered hepatic endocannabinoid signaling, increased inflammation, and impaired insulin sensitivity and insulin clearance. CB1 inhibition significantly attenuated LPS signaling, which attenuated LPS-induced metabolic alterations. Therefore, we concluded that CB1 contributes to LPS-mediated inflammation and insulin resistance, suggesting that blocking CB1 signaling may have therapeutic benefits in reducing inflammation-induced metabolic abnormalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30502357

https://www.sciencedirect.com/science/article/abs/pii/S0031938418304190?via%3Dihub

miR-23b-3p and miR-130a-5p affect cell growth, migration and invasion by targeting CB1R via the Wnt/β-catenin signaling pathway in gastric carcinoma.

Image result for dovepress

“Gastric cancer (GC) is the most common malignancy and third leading cause of cancer mortality worldwide. The identification of a sensitive biomarker as well as effective therapeutic targets for the treatment of GC is of critical importance. microRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets.

RESULTS:

In the present study, it was demonstrated that the cannabinoid receptor 1 (CB1R) was overexpressed, and miR-23b-3p and miR-130a-5p were downregulated, in GC cells. In addition, the results revealed that these effects are associated with malignant biological behaviors exhibited by GC cells. Furthermore, miR-23b-3p and miR-130a-5p may regulate CB1R expression via the Wnt/β-catenin signaling pathway.

CONCLUSION:

Our results suggested dysregulation of CB1R expression is closely related to the malignant biological behavior of gastric cancer cells. miRNA/CB1R-based therapy may represent a promising therapeutic strategy for the clinical treatment of GC patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30498363

https://www.dovepress.com/mir-23b-3p-and-mir-130a-5p-affect-cell-growth-migration-and-invasion-b-peer-reviewed-article-OTT

Peripubertal cannabidiol treatment rescued behavioral and neurochemical abnormalities in MAM model of schizophrenia.

 Neuropharmacology

“In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression which might be due to a reduction in DNA methylation at gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.”

https://www.ncbi.nlm.nih.gov/pubmed/30496751

https://www.sciencedirect.com/science/article/pii/S0028390818308761?via%3Dihub

Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats.

 Image result for international journal of neuropsychopharmacology

“Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine-seeking behavior.

The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats.

RESULTS:

JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. Neither JZL184 nor URB597 reinstated methamphetamine-seeking behavior when administered alone. In the elevated plus-maze test, rats that were in withdrawal from methamphetamine self-administration spent less time in the open arms. JZL184 ameliorated the decrease in time spent in the open arms.

CONCLUSION:

We showed that JZL184 reduced both the cue- and stress-induced reinstatement of methamphetamine-seeking and anxiety-like behaviors in rats that had self-administered methamphetamine. It was suggested that a decrease in 2-arachidonoylglycerol in the brain could drive the reinstatement of methamphetamine-seeking and anxiety-like behaviors.”

https://www.ncbi.nlm.nih.gov/pubmed/30481332

https://academic.oup.com/ijnp/advance-article/doi/10.1093/ijnp/pyy086/5210886

Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior.

Image result for Chem Senses. journal

“The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation.

However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis.

Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia.

Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding.

In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30481264

Inhibition of Cannabinoid Receptor 1 Can Influence the Lipid Metabolism in Mice with Diet-Induced Obesity.

“A growing number of evidences accumulated about critical metabolic role of cannabinoid type 1 receptor (CB1), carnitine palmitoyltransferase-1 (CPT1) and peroxisome proliferator-activated receptors (PPARs) in some peripheral tissues, including adipose tissue, liver, skeletal muscle and heart.

Taken together, these data indicate that the inhibition of CB1 could ameliorate lipid metabolism via the stimulation of the CPT1A and CPT1B expression in vivo. Simultaneously, the PPARα and PPARγ expression levels significantly differed compared to that of PPARβ in obesity and lipid metabolism-related disorders under blockade of CB1.

Both the mechanism of the influence of CB1 inhibition on lipid metabolism in the examined tissues and the specific mechanism of PPARα, PPARγ and PPARβ involvement in lipid exchange under these conditions remain to be further elucidated.”

https://www.ncbi.nlm.nih.gov/pubmed/30472964

https://link.springer.com/article/10.1134%2FS0006297918100127