Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries.

Regulatory, Integrative and Comparative Physiology

“Recent evidence suggests that endocannabinoids acting via cannabinoid CB1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature.

The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A2 analog (U46619), angiotensin II (Ang II), serotonin (5-HT) and phenylephrine which stimulate distinct Gq/11-protein coupled receptors (TP, AT1, 5-HT2 and α1-adrenergic) in isolated endothelium-intact human (hPAs) and rat pulmonary arteries (rPAs).

The present study shows the protective interaction between the endocannabinoid system and vasoconstriction to U46619 and Ang II in the human and rat pulmonary circulation. U46619 and Ang II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB1 receptor-dependent and/or -independent vasorelaxation, which in the negative feedback mechanism reduces later agonists-induced vasoconstriction.” https://www.ncbi.nlm.nih.gov/pubmed/28356298

http://ajpregu.physiology.org/content/early/2017/03/27/ajpregu.00324.2016

Loss of Cannabinoid CB 1 Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility.

Image result for cerebral cortex journal

“Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB 1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB 1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB 1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB 1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB 1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB 1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.”

https://www.ncbi.nlm.nih.gov/pubmed/28334226

Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors.

 Image result for Am J Transl Res

“The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity.

Actually, CBr agonists can be neuroprotective.

Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.”

https://www.ncbi.nlm.nih.gov/pubmed/28337258

The CB1 Receptor as the Cornerstone of Exostasis.

Image result for neuron journal

“The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.”

https://www.ncbi.nlm.nih.gov/pubmed/28334603

Overactivation of the endocannabinoid system alters the anti-lipolytic action of insulin in mouse adipose tissue.

Image result for Am J Physiol Endocrinol Metab

“Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT).

The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate.

For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways.

Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the anti-lipolytic action of insulin.

Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target.

This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test whether the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28325733

Antidiabetic, antidyslipidemic and toxicity profile of ENV-2: A potent pyrazole derivative against diabetes and related diseases.

Image result for Eur J Pharmacol.

“Diabetes is a major health problem and a predisposition factor for further degenerative complications and, therefore, novel therapies are urgently needed. Currently, cannabinoid receptor 1 (CB1 receptor) antagonists have been considered as promissory entities for metabolic disorders treatment.

Accordingly, the purpose of this work was the evaluation of the sub-acute antidiabetic, anti-hyperglycemic, antidyslipidemic and toxicological profile of ENV-2, a potent hypoglycemic and antioxidant CB1 receptor antagonist.

In this study, ENV-2 showed a pronounced anti-hyperglycemic effect even at a dose of 5mg/kg (P< 0.001) in a glucose tolerance test on normoglycemic rats. Moreover, after administration of ENV-2 (16mg/kg) to diabetic rats, a prominent antidiabetic activity was observed (P< 0.001), which was higher than glibenclamide.

Sub-acute treatment (10 days) of ENV-2 resulted in a significant reduction of plasma glucose (P< 0.001). Also, the levels of peripheral lipids were improved; blood triacylglycerols (TG) and cholesterol (CHOL) were diminished (P< 0.001). In addition, it was found that ENV-2 reduced IL-1β and IL-18 mRNA expression in adipose tissue (P< 0.05). Due to the satisfactory outcomes, we were interested in evaluating the toxicity of ENV-2 in both acute and sub-chronic approaches. Regarding the acute administration, the compound resulted to be non-toxic and was grouped in category 5 according to OECD. It was also found that sub-chronic administration did not increase the size of the studied organs, while no structural damage was observed in heart, lung, liver and kidney tissues. Finally, neither AST nor ALT damage hepatic markers were augmented.”

https://www.ncbi.nlm.nih.gov/pubmed/28322830

Cannabinoid receptor 1 contributes to sprouted innervation in endometrial ectopic growth through mitogen-activated protein kinase activation.

Image result for brain research journal

“The endocannabinoid system regulates neurite outgrowth and neurogenesis during development of the central nervous system.

Cannabinoid receptor 1 (CB1R) is expressed in neurons, including the somata and fibers, that innervate the endometrial ectopic cyst in rats.

 

This finding may provide a new therapeutic target for patients with endometriosis.”

https://www.ncbi.nlm.nih.gov/pubmed/28322749

2-Arachidonoylglycerol ameliorates inflammatory stress-induced insulin resistance in cardiomyocytes.

Image result for J Biol Chem.

“Several studies have linked impaired glucose uptake and insulin resistance (IR) to functional impairment of the heart. Recently, endocannabinoids have been implicated in cardiovascular disease. However, the mechanisms involving endocannabinoid signaling, glucose uptake and IR in cardiomyocytes are understudied.

Here, we report the endocannabinoid 2-Arachidonoylglycerol (2-AG) via stimulation of cannabinoid type-1 (CB1) receptor and Ca2+/Calmodulin-dependent protein kinase β (CaMKKβ) activates AMPK leading to increased glucose uptake. Interestingly, we have observed that the mRNA expression of CB1 and CB2 receptors was decreased in diabetic mice, indicating reduced endocannabinoid signaling in diabetic heart. We further establish that TNFα induces IR in cardiomyocytes.

Treatment with 2-AG suppresses TNFα-induced pro-inflammatory markers, and improves IR and glucose uptake. Conversely, pharmacological inhibition or knockdown of AMPK attenuates the anti-inflammatory effect and reversal of IR elicited by 2-AG. Additionally, in human embryonic stem cell-derived cardiomyocytes challenged with TNFα or free fatty acid (FFA), we demonstrate that 2-AG improves insulin sensitivity and glucose uptake.

In conclusion, 2-AG abates inflammatory responses, increases glucose uptake and overcomes IR in an AMPK-dependent manner in cardiomyocytes.”

https://www.ncbi.nlm.nih.gov/pubmed/28320859

Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

Image result for Eur J Pharmacol.

“The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer’s disease. An endogenous constellation of proteins related to cannabinoid1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid.

However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid1 receptor in light-induced retinal degeneration using in vitro and in vivo models.

Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer.

These results suggest that the cannabinoid1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28315677

The Ratio of 2-AG to Its Isomer 1-AG as an Intrinsic Fine Tuning Mechanism of CB1 Receptor Activation.

Image result for Front Cell Neurosci.“Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid ‘2-AG’ is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers.

To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro.

We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration – mimicking the process of isomerization over time – attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients.

Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses.

In addition, our results suggest that may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms.”