Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.

Image result for Epilepsy Behav

“The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy.

Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings.

We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges.

Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system.

Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported.

Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies.

However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies.

The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy.

Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood.

Therefore, in light of these paradigm-changing clinical events, the present review’s findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/28190698

Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors.

Image result for J Neurosci

“Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits.

The present study demonstrates that the endogenous cannabinoid receptor agonists, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in C. elegans and also modulate monoaminergic signaling at multiple levels.

2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor, NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19 null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors.

Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine receptor, OCTR-1, and a 5-HT1A-like receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT.

This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling and highlights the advantages of studying cannabinoid signaling in a genetically-tractable whole animal model.

SIGNIFICANCE STATEMENTCannabis sativa causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the C. elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially impacting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling, and the advantages of studying cannabinoid signaling in a genetically-tractable, whole-animal model.”

https://www.ncbi.nlm.nih.gov/pubmed/28188220

Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance.

Image result for Handb Exp Pharmacol.

“Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands’ synthesizing/degrading enzymes.

The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury.

For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects.

New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.”

https://www.ncbi.nlm.nih.gov/pubmed/28161834

Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

Image result for Toxicology in Vitro

“The role of endocannabinoid system in melanoma development and progression is actually not fully understood.

This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma.

Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/28131817

“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557
“Cannabinoids (CB) like ∆9-tetrahydrocannabinol (THC) can induce cancer cell apoptosis and inhibit angiogenesis. Our results confirm the value of exogenous cannabinoids for the treatment of melanoma” http://www.ncbi.nlm.nih.gov/pubmed/25921771

Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron.

Image result for Eur J Pharmacol.

“Cannabinoid system is a potential target for pain control.

Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons.

This study investigates whether the anti-hyperalgesic effect of CB1receptor activation involves P2×3 receptor in primary afferent neurons.

Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2×3 receptor in the primary afferent neurons.”

https://www.ncbi.nlm.nih.gov/pubmed/28131783

Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.

Image result for comprehensive physiology

“The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system.

A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity.

The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain.

We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress.

We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists.

We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine.

We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol.

These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized.”

https://www.ncbi.nlm.nih.gov/pubmed/28134998

Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease.

Image result for Front Cell Neurosci.

“The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors together with the discovery of their endogenous ligands in the late 80s and early 90s, resulted in a major effort aimed at understanding the mechanisms and physiological roles of the endocannabinoid system (ECS). Due to its expression and localization in the central nervous system (CNS), the CB1 receptor together with its endogenous ligands (endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation, has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others. In this review, we will provide a general overview of the ECS with emphasis on the CB1 receptor in health and disease. We will describe our current understanding of the complex aspects of receptor signaling and trafficking, including the non-canonical signaling pathways such as those mediated by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will highlight some of the disorders in which CB1 receptors have been implicated. Significant knowledge has been achieved over the last 30 years. However, much more research is still needed to fully understand the complex roles of the ECS, particularly in vivo and to unlock its true potential as a source of therapeutic targets.”

https://www.ncbi.nlm.nih.gov/pubmed/28101004

Developmental Role of Macrophage Cannabinoid-1 Receptor Signaling in Type-2 Diabetes.

Image result for Diabetes journal

“Islet inflammation promotes β-cell loss and type-2 diabetes (T2D), a process replicated in Zucker Diabetic Fatty (ZDF) rats in which β-cell loss has been linked to cannabinoid-1 receptor (CB1R)-induced pro-inflammatory signaling in macrophages infiltrating pancreatic islets.

Here, we analyzed CB1R signaling in macrophages and its developmental role in T2Dα. ZDF rats with global deletion of CB1R are protected from β-cell loss, hyperglycemia and nephropathy present in ZDF littermates.

Adoptive transfer of CB1R-/- bone marrow to ZDF rats also prevents β-cell loss and hyperglycemia, but not nephropathy. ZDF islets contain elevated levels of CB1R, IL-1β, TNF-α, the chemokine CCL2 and interferon regulatory factor-5 (IRF5), a marker of M1 inflammatory macrophage polarization.

In primary cultured rodent and human macrophages, CB1R activation increased Irf5 expression, whereas knockdown of Irf5 blunted CB1R-induced secretion of inflammatory cytokines without affecting CCL2 expression, which was p38MAPKα-dependent. Macrophage-specific in vivo knockdown of Irf5 protected ZDF rats from β-cell loss and hyperglycemia.

Thus, IRF5 is a crucial downstream mediator of diabetogenic CB1R signaling in macrophages and a potential therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/28082458

Neural contractions in colonic strips from patients with diverticular disease: role of endocannabinoids and substance P

Image result for gut journal

“Diverticulosis is a common disease of not completely defined pathogenesis. Motor abnormalities of the intestinal wall have been frequently described but very little is known about their mechanisms. We investigated in vitro the neural response of colonic longitudinal muscle strips from patients undergoing surgery for complicated diverticular disease (diverticulitis).

Neural control of colon motility is profoundly altered in patients with diverticulitis. Their raised levels of anandamide, apparent desensitisation of the presynaptic neural cannabinoid CB1 receptor, and the SR141716 induced intrinsic response, suggest that endocannabinoids may be involved in the pathophysiology of complications of colonic diverticular disease.

Agents acting on the endocannabinoid system could eventually find therapeutic application in colonic inflammatory and motility disorders.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1856307/

Diuretic effects of cannabinoids.

Image result for journal of pharmacology and experimental therapeutics

“These data indicate that cannabinoids have robust diuretic effects in rats that are mediated via CB1 receptor mechanisms.

Overall, our data indicate that diuresis is a CB1-mediated effect that may serve as a reliable and objective physiologic measure of cannabinoid action in rats; the circumstances under which these results represent a potential therapeutic benefit or potential liability of cannabinoids remain to be determined.

The implications of these findings currently are poorly understood, although a better understanding of mechanisms and sites of action by which cannabinoids increase urine loss may lead to the rational development of novel cannabinergic medications.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

“Diuretics are medicines that help reduce the amount of water in the body. Diuretics are used to treat the buildup of excess fluid in the body that occurs with some medical conditions such ascongestive heart failure, liver disease, and kidney disease. Some diuretics are also prescribed to treat high bloodpressure. These drugs act on the kidneys to increase urine output. This reduces the amount of fluid in the bloodstream,which in turn lowers blood pressure.” http://medical-dictionary.thefreedictionary.com/diuretics