Activation of CB1R Promotes Lipopolysaccharide-Induced IL-10 Secretion by Monocytic Myeloid-Derived Suppressive Cells and Reduces Acute Inflammation and Organ Injury.

The Journal of Immunology: 204 (10)“Cannabis sativa and its principal components, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol, are increasingly being used to treat a variety of medical problems, including inflammatory conditions.

Although studies suggest that the endocannabinoid system has immunomodulatory properties, there remains a paucity of information on the effects of cannabinoids on immunity and on outcomes of infection and injury.

We investigated the effects and mechanism(s) of action of cannabinoid receptor agonists, including Δ9-THC, on inflammation and organ injury in endotoxemic mice.

Administration of Δ9-THC caused a dramatic early upregulation of plasma IL-10 levels, reduced plasma IL-6 and CCL-2 levels, led to better clinical status, and attenuated organ injury in endotoxemic mice. The anti-inflammatory effects of Δ9-THC in endotoxemic mice were reversed by a cannabinoid receptor type 1 (CB1R) inverse agonist (SR141716), and by clodronate-induced myeloid-cell depletion, but not by genetic invalidation or blockade of other putative Δ9-THC receptors, including cannabinoid receptor type 2, TRPV1, GPR18, GPR55, and GPR119. Although Δ9-THC administration reduced the activation of several spleen immune cell subsets, the anti-inflammatory effects of Δ9-THC were preserved in splenectomized endotoxemic mice. Finally, using IL-10-GFP reporter mice, we showed that blood monocytic myeloid-derived suppressive cells mediate the Δ9-THC-induced early rise in circulating IL-10.

These results indicate that Δ9-THC potently induces IL-10, while reducing proinflammatory cytokines, chemokines, and related organ injury in endotoxemic mice via the activation of CB1R. These data have implications for acute and chronic conditions that are driven by dysregulated inflammation, such as sepsis, and raise the possibility that CB1R-signaling may constitute a novel target for inflammatory disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32385136

https://www.jimmunol.org/content/early/2020/05/07/jimmunol.2000213

Potential therapeutic treatments of cancer-induced bone pain.

Current Opinion in Supportive and Palliative Care “The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects.

Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review.

RECENT FINDINGS:

Cysteine/glutamate antiporter system, xc, cannabinoids, kappa opioids, and a ceramide axis have all been shown to have potential as novel therapeutic targets without the negative effects of opioids.

SUMMARY:

Review of the most recent and promising studies involving CIBP, specifically within murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in late stages, however the standard of care is not effective to treat CIBP. The complicated and chronic nature of this type of pain response renders over the counter analgesics and opioids largely ineffective as well as difficult to use due to unwanted side effects. Preclinical studies have been standardized and replicated while novel treatments have been explored utilizing various alternative receptor pathways: cysteine/glutamate antiporter system, xc, cannabinoid type 1 receptor, kappa opioids, and a ceramide axis sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1.”

https://www.ncbi.nlm.nih.gov/pubmed/32349095

 

Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa.

International Journal of Eating Disorders“Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood.

Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance.

Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats’ hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter.

Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter.

These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.”

https://www.ncbi.nlm.nih.gov/pubmed/32275093

https://onlinelibrary.wiley.com/doi/abs/10.1002/eat.23271

Age-dependent Alteration in Mitochondrial Dynamics and Autophagy in Hippocampal Neuron of Cannabinoid CB1 receptor-deficient Mice.

Brain Research Bulletin“Endocannabinoid system activity contributes to the homeostatic defense against aging and thus may counteract the progression of brain aging.

The cannabinoid type 1 (CB1) receptor activity declines with aging in the brain, which impairs neuronal network integrity and cognitive functions.

Altogether, these findings suggest that reduced CB1 signaling in CB1-KO mice leads to reduced mitophagy and abnormal mitochondrial morphology in hippocampal neurons during aging.

These mitochondrial changes might be due to the impairments in mitochondrial quality control system, which links age-related decline in CB1 activity and impaired memory.”

https://www.ncbi.nlm.nih.gov/pubmed/32294520

https://www.sciencedirect.com/science/article/abs/pii/S0361923020301386?via%3Dihub

“Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586121/

CBD Reverts the Mesenchymal Invasive Phenotype of Breast Cancer Cells Induced by the Inflammatory Cytokine IL-1β.

ijms-logoCannabidiol (CBD) has been used to treat a variety of cancers and inflammatory conditions with controversial results. In previous work, we have shown that breast cancer MCF-7 cells, selected by their response to inflammatory IL-1β cytokine, acquire a malignant phenotype (6D cells) through an epithelial-mesenchymal transition (EMT).

We evaluated CBD as a potential inhibitor of this transition and inducer of reversion to a non-invasive phenotype. It decreased 6D cell viability, downregulating expression of receptor CB1. The CBD blocked migration and progression of the IL-1β-induced signaling pathway IL-1β/IL-1RI/β-catenin, the driver of EMT. 

Cannabidiol reestablished the epithelial organization lost by dispersion of the cells and re-localized E-cadherin and β-catenin at the adherens junctions. It also prevented β-catenin nuclear translocation and decreased over-expression of genes for ∆Np63α, BIRC3, and ID1 proteins, induced by IL-1β for acquisition of malignant features.

Cannabidiol inhibited the protein kinase B (AKT) activation, a crucial effector in the IL-1β/IL-1RI/β-catenin pathway, indicating that at this point there is crosstalk between IL-1β and CBD signaling which results in phenotype reversion.

Our 6D cell system allowed step-by-step analysis of the phenotype transition and better understanding of mechanisms by which CBD blocks and reverts the effects of inflammatory IL-1β in the EMT.”

https://www.ncbi.nlm.nih.gov/pubmed/32244518

https://www.mdpi.com/1422-0067/21/7/2429

Cannabidiol alleviates hemorrhagic shock-induced neural apoptosis in rats by inducing autophagy through activation of the PI3K/AKT pathway.

Publication cover image“Recently, several studies have reported that the pharmacological effects exerted by cannabidiol (CBD) are partially related to the regulation of autophagy. Increasing evidence indicates that autophagy provides protection against ischemia-induced brain injury. However, the protective effect of CBD against mitochondrial-dependent apoptosis in hemorrhagic shock (HS)-induced brain injury has not been studied.

In the present study, we observed the protective effects of CBD against neural mitochondrial-dependent apoptosis in a rat model of HS. In addition, CBD increased Beclin-1 and LC3II expression and reduced P62 expression, which were indicative of autophagy. CBD treatment attenuated the neural apoptosis induced by HS, as reflected by restoring mitochondrial dysfunction, downregulation of BAX, neuro-apoptosis ratio and NF-κB signaling activation, and upregulation of BCL2 in the cerebral cortex.

Such protective effects were reversed by 3-Methyladenine, a specific autophagy inhibitor, indicating that the protective effects of CBD treatment involved autophagy. LY294002, a PI3K inhibitor, significantly inhibited CBD-induced autophagy, demonstrating that PI3K/AKT signaling is involved in the CBD’s regulation of autophagy. Furthermore, we found that CBD treatment upregulated PI3K/AKT signaling via cannabinoid receptor 1.

Therefore, these findings suggested that CBD treatment protects against cerebral injury induced by HS-mediated mitochondrial-dependent apoptosis by activating the PI3K/AKT signaling pathway to reinforce autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/32215966

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12557

“Hemorrhagic shock occurs when the body begins to shut down due to large amounts of blood loss.” https://www.healthline.com/health/hemorrhagic-shock

Stimulation of brain cannabinoid CB1 receptors can ameliorate hypertension in spontaneously hypertensive rats.

Clinical and Experimental Pharmacology and Physiology“Excessive activation of the sympatho-adrenomedullary system plays a pathogenic role in triggering and sustaining essential hypertension. We previously reported that, in normotensive rats, intracerebroventricularly (i.c.v.) administered neuropeptides, corticotropin-releasing factor and bombesin induced activation of the sympatho-adrenomedullary system, and that brain cannabinoid CB1 receptors negatively regulated this activation.

In this study, we investigated the effects of brain CB1 receptor stimulation on blood pressure and the sympatho-adrenomedullary outflow in spontaneously hypertensive rats (SHRs), commonly used animal models of essential hypertension, and in Wistar-Kyoto (WKY) rats, normotensive controls of SHRs.

These results suggest that stimulation of brain CB1 receptors can ameliorate hypertension accompanied by enhanced sympathetic outflow without affecting blood pressure under normotensive conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/32141630

https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1681.13297

Dietary intake of polyunsaturated fatty acids alleviates cognition deficits and depression-like behaviour via cannabinoid system in sleep deprivation rats.

Behavioural Brain Research“Sleep deprivation (SD) is a common feature in modern society. Prolonged sleep deprivation causes cognition deficits and depression-like behavior in the model of animal experiments.

Endocannabinoid system are key modulators of synaptic function, which were related to memory and mood. Although the underlying mechanism remains unknown, several studies indicated the benefits of polyunsaturated fatty acids (PUFAs, linolenic acid, 39.7%; linoleic acid, 28%; and oleic acid, 22%) on brain function through the endocannabinoid system.

The present study aimed to evaluate the influence of dietary PUFAs on cognition deficits induced by sleep deprivation in Sprague Dawley rats.

The results revealed that SD led to the disorder of cognition and mood which was improved by the supplement of PUFAs.

SD significantly increased the mEPSC frequency, and decreased the protein level of cannabinoid type-1 receptors (CB1R). These changes were restored by supplement of PUFAs, which showed a similar level to the control group. Behaviour tests showed that the positive effects on repairing cognition and anxiety disorders were almost completely abolished when the CB1R receptor antagonist rimonabant was applied to the SD rats.

These findings indicated that PUFAs are a factor regulating cognition deficits and depression induced by SD via cannabinoid type-1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/32035867

“PUFAs reduced cognition deficits and depression-like behaviours of sleep deprivation rats in the behaviour tests.”

https://www.sciencedirect.com/science/article/pii/S0166432819317218?via%3Dihub

“Hempseed oil is over 80% in polyunsaturated fatty acids (PUFAs), and is an exceptionally rich source of the two essential fatty acids (EFAs) linoleic acid (18:2 omega-6) and alpha-linolenic acid (18:3 omega-3). The omega-6 to omega-3 ratio (n6/n3) in #hempseed oil is normally between 2:1 and 3:1, which is considered to be optimal for human health.”

https://www.researchgate.net/publication/226272227_Hempseed_as_a_nutritional_resource_An_overview

Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation.

molecules-logo“Cannabinoid receptor 1 (CB1) activation has been reported to reduce transient receptor potential cation channel subfamily V member 1 (TRPV1)-induced inflammatory responses and is anti-nociceptive and anti-inflammatory in corneal injury.

We examined whether allosteric ligands, can modulate CB1 signaling to reduce pain and inflammation in corneal hyperalgesia.

Corneal hyperalgesia was generated by chemical cauterization of cornea in wildtype and CB2 knockout (CB2-/-) mice. The novel racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229 were examined alone or in combination with the orthosteric CB1 agonist Δ8-tetrahydrocannabinol (Δ8-THC). Pain responses were assessed following capsaicin (1 µM) stimulation of injured corneas at 6 h post-cauterization. Corneal neutrophil infiltration was also analyzed. GAT228, but not GAT229 or GAT211, reduced pain scores in response to capsaicin stimulation.

Combination treatments of 0.5% GAT229 or 1% GAT211 with subthreshold Δ8-THC (0.4%) significantly reduced pain scores following capsaicin stimulation. The anti-nociceptive effects of both GAT229 and GAT228 were blocked with CB1 antagonist AM251, but remained unaffected in CB2-/- mice. Two percent GAT228, or the combination of 0.2% Δ8-THC with 0.5% GAT229 also significantly reduced corneal inflammation.

CB1 allosteric ligands could offer a novel approach for treating corneal pain and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31968549

https://www.mdpi.com/1420-3049/25/2/417

Cannabidiol-induced panicolytic-like effects and fear-induced antinociception impairment: the role of the CB1 receptor in the ventromedial hypothalamus.

Image result for Springer Link“The behavioural effects elicited by chemical constituents of Cannabis sativa, such as cannabidiol (CBD), on the ventromedial hypothalamus (VMH) are not well understood. There is evidence that VMH neurons play a relevant role in the modulation of unconditioned fear-related defensive behavioural reactions displayed by laboratory animals.

OBJECTIVES:

This study was designed to explore the specific pattern of distribution of the CB1 receptors in the VMH and to investigate the role played by this cannabinoid receptor in the effect of CBD on the control of defensive behaviours and unconditioned fear-induced antinociception.

METHODS:

A panic attack-like state was triggered in Wistar rats by intra-VMH microinjections of N-methyl-D-aspartate (NMDA). One of three different doses of CBD was microinjected into the VMH prior to local administration of NMDA. In addition, the most effective dose of CBD was used after pre-treatment with the CB1 receptor selective antagonist AM251, followed by NMDA microinjections in the VMH.

RESULTS:

The morphological procedures demonstrated distribution of labelled CB1 receptors on neuronal perikarya situated in dorsomedial, central and ventrolateral divisions of the VMH. The neuropharmacological approaches showed that both panic attack-like behaviours and unconditioned fear-induced antinociception decreased after intra-hypothalamic microinjections of CBD at the highest dose (100 nmol). These effects, however, were blocked by the administration of the CB1 receptor antagonist AM251 (100 pmol) in the VMH.

CONCLUSION:

These findings suggest that CBD causes panicolytic-like effects and reduces unconditioned fear-induced antinociception when administered in the VMH, and these effects are mediated by the CB1 receptor-endocannabinoid signalling mechanism in VMH.”

https://www.ncbi.nlm.nih.gov/pubmed/31919563

https://link.springer.com/article/10.1007%2Fs00213-019-05435-5

“panicolytic: That reduces the flight reflex in animals when faced with danger. Any drug that has this effect.” https://en.wiktionary.org/wiki/panicolytic