Targeted proteomics of cannabinoid receptor CB1 and the CB1b isoform.

Image result for Journal of Pharmaceutical and Biomedical Analysis

“Cannabinoid receptors (CBR), including CB1 and CB2 have been therapeutic targets for a number of conditions.

Recently, splice variants of the CB1R have been identified in humans.

The isoforms differ in their N-terminus sequence and pharmacological activity relative to the CB1R, as a result, the differentiation between the CB1 receptor and its isoform is required.

As a result, a selected reaction monitoring mass spectrometry (SRM-MS) method was developed for the quantitation of CB1 and the CB1b isoform in CHO cells transduced with CB1 and CB1b.

The SRM-MS protocol was assessed with isotopically labeled peptide standards and had high reproducibility of intra-day assay (CVs from 1.9 to 4.3% for CB1 and 0.5 to 5.9% for CB1b) and inter-day assay (CVs from 1.2 to 5.2% for CB1 and 1.2 to 6.1% for CB1b).”

https://www.ncbi.nlm.nih.gov/pubmed/27914737

Δ9-THC-Caused Synaptic and Memory Impairments Are Mediated through COX-2 Signaling

Image result for cell journal

“Marijuana has been used for thousands of years as a treatment for medical conditions.

However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G protein βγ subunits.

Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories.

Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition.

These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2.”

http://www.cell.com/cell/abstract/S0092-8674(13)01360-3

“Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.” https://www.ncbi.nlm.nih.gov/pubmed/18556441

Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader-Willi syndrome.

Image result for Molecular Metabolism

“Extreme obesity is a core phenotypic feature of Prader-Willi syndrome (PWS).

Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R) blockade reverses obesity both in animals and humans.

The first-in-class CB1R antagonist rimonabant proved effective in inducing weight loss in adults with PWS. However, it is no longer available for clinical use because of its centrally mediated, neuropsychiatric, adverse effects.

CONCLUSIONS:

Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS.”

https://www.ncbi.nlm.nih.gov/pubmed/27900261

The cannabinoid receptor 1 gene (CNR1) and multiple sclerosis: an association study in two case-control groups from Spain.

Image result for multiple sclerosis journal

“Different studies point to the implication of the endocannabinoid system in multiple sclerosis (MS) and animal models of MS.

The purpose of this study was to evaluate a possible association of MS with polymorphic markers at the CNR1 gene, encoding the cannabinoid 1 (CB(1)) receptor.

We have performed a genetic analysis of an AAT repeat microsatellite localized in the downstream region of the CNR1 gene, in two case-control groups of MS patients and healthy controls (HC) from Spain (Madrid and Bilbao).

MSpatients with primary progressive MS (PPMS) had more commonly long ((AAT) > or = (13)) alleles and genotypes with a significant difference for genotype 7/8 in Madrid (p = 0.043) and in the sum of both groups (p = 0.016); short alleles were less frequently found in PPMS with a significant difference for allele 5 in the analysis of both groups together (p = 0.039).

In patients with relapsing MS, no consistent differences in allele and genotype distribution were found. Disease severity and progression was unrelated to AAT repeat variations.

In conclusion, long (AAT) > or = (13) CNR1 genotypes could behave as risk factors for PPMS.”

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Overactivation of cannabinoid receptor type 1 in rostral ventrolateral medulla promotes cardiovascular responses in spontaneously hypertensive rats.

 

Image result for J Hypertens.

“Stimulation of cannabinoid type 1 (CB1) receptor in the rostral ventrolateral medulla (RVLM) increases renal sympathetic nerve activity (RSNA) and blood pressure (BP) in rats.

Thus, we hypothesized that abnormal expression of CB1 receptor in the RVLM may play a critical role in the pathogenesis of essential hypertension.

Taken together, our results suggested that alterations of CB1 receptor desensitization in the RVLM may play a role in the pathogenesis of essential hypertension.”

https://www.ncbi.nlm.nih.gov/pubmed/27861247

Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

Image result for endocrine journal

“We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone.

CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity.

Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue.

CNR1 is upregulated in states of type 2 diabetes and insulin resistance.

Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis.

Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.”

https://www.ncbi.nlm.nih.gov/pubmed/27858284

Highest-resolution model to date of brain receptor behind marijuana’s high

“Researchers at UT Southwestern Medical Center report the most detailed 3-D structure to date of the brain receptor that binds and responds to the chemical at the root of marijuana’s high.

Their high-resolution structure of the human cannabinoid receptor 1 (CB1) and its binding site for the chemical tetrahydrocannabinol (THC) should lead to a better understanding of how marijuana affects the brain.

The research also could aid discovery of new treatments for conditions that target the receptor, said Dr. Daniel Rosenbaum, Assistant Professor of Biophysics and Biochemistry at UT Southwestern.”

https://www.sciencedaily.com/releases/2016/11/161116131935.htm

High-resolution crystal structure of the human CB1 cannabinoid receptor.

Image result for Nature journal

“The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ9-tetrahydrocannabinol (THC)1. The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain2, epilepsy3, obesity4, and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.”

Antagonism of cannabinoid receptor 1 attenuates the anti-inflammatory effects of electroacupuncture in a rodent model of migraine.

Image result for acupuncture in medicine

“The anti-nociceptive effects of electroacupuncture (EA) in migraine have been documented in multiple randomised controlled trials.

Neurogenic inflammation plays a key role in migraine attacks, and the anti-inflammatory effects of acupuncture have been associated with the type 1 cannabinoid (CB1) receptor.

CB1 receptors appear to mediate anti-inflammatory effects of EA in a rat model of migraine.”

https://www.ncbi.nlm.nih.gov/pubmed/27834685