A cannabinoid link between mitochondria and memory.

Image result for nature journal

“Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects ofcannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.”

https://www.ncbi.nlm.nih.gov/pubmed/27828947

Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration.

Logo of frontphysiol

“The cannabinoid type 1 (CB1) receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1), where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles.

Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis) and myocardium from wild-type and CB1 -KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahydrocannabinol (Δ9-THC) concentrations (100 nM or 200 nM) was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1 -KO mice.

Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12 and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1 -KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA) cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1 -WT and CB1 -KO. CB1 -KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant difference was observed in the Sdha and Cox4i1 expression, between CB1 -WT andCB1 -KO.

In conclusion, CB1 receptors in skeletal and myocardial muscles are predominantly localized in mitochondria. The activation of mtCB1 receptors may participate in the mitochondrial regulation of the oxidative activity probably through the relevant enzymes implicated in the pyruvate metabolism, a main substrate for TCA activity.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078489/

The cannabinoid receptor CB1 contributes to the development of ectopic lesions in a mouse model of endometriosis.

Image result for human reproduction journal

“Does signaling via the cannabinoid (CB1) receptor play a role in the pathogenesis of endometriosis in a mouse model?

The expression of components of the endocannabinoid system has been demonstrated in both mouse and human uteri. CB1 receptors are expressed in human epithelial and stromal cell lines derived from eutopic endometrium and deep infiltrating endometriosis nodules.

This was a randomized study in a mouse model of endometriosis.

We provide evidence that endocannabinoid signaling via CB1 receptor plays a role in the development of endometriosis in a mouse model.

However, the relative contribution of the CB1-mediated signaling pathways active in inflammatory, uterine and peritoneal cells remains to be ascertained. Since the study was performed in a mouse model, the significance of the findings in the human system warrants further investigation.

Clarifying the function and regulation of CB1 and its molecular interactions with endogenous ligands, and how endocannabinoids levels are regulated in women with endometriosis, represent critical areas of research for the potential development of a novel medical treatment of the disease.”

https://www.ncbi.nlm.nih.gov/pubmed/27821707

Endogenous cannabinoid system alterations and their role in epileptogenesis after brain injury in rat.

Image result for epilepsy research journal

“Post-traumatic epilepsy (PTE) is one of the most common complications resulting from brain injury, however, antiepileptic drugs usually fail to prevent it.

Several lines of evidence have demonstrated that the endogenous cannabinoid system (ECS) plays a pivotal role during epileptogenesis in several animal models.

A recent study has shown that a cannabinoid type 1 (CB1) receptor antagonist could suppress long-term neuron hyperexcitability after brain injury, but the underlying mechanisms remain largely unknown.

In this study, we first analyzed the dynamic expression of different components of the ECS at various time points after brain injury in rats. Then, we conducted a 12-month-long session of behavioral monitoring after the brain injury, and based on the results, the rats were divided into a PTE group and a non-PTE group. Finally, the changes in the ECS between the two groups were compared.

We found that the ECS exhibited a biphasic alteration after brain injury; the expression of the CB1 receptor and 2-arachidonoylglycerol (2-AG) in the PTE group was significantly higher than that of the non-PTE group 12 months after traumatic brain injury.

Our preliminary results indicated that the ECS might be involved in post-traumatic epileptogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/27810514

Crystal Structure of the Human Cannabinoid Receptor CB1.

Image result for cell journal

“Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use.

CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders.

Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study.

The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding.

In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids.

This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.”

https://www.ncbi.nlm.nih.gov/pubmed/27768894

Overexpression of cannabinoid receptor 1 promotes renal cell carcinoma progression.

Image result for Tumour Biol.

“Renal cell carcinoma (RCC) is a common urologic tumor with a poor prognosis.

Cannabinoid receptor 1 (CB1), which is a G protein-coupled receptor, has recently been reported to participate in the genesis and development of various cancers.

However, the exact role of CB1 in RCC is unknown. The aim of this study was to determine the role of CB1 in RCC cell lines and RCC prognosis, thus underlying its potential as a therapeutic target.

CB1 expression is functionally associated to cellular proliferation, apoptosis, and invasion ability of RCC.

Our data suggest that CB1 might be a potential target for RCC clinical therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/27757850

Structure of primary cannabinoid receptor is revealed

“Findings give insight into designing safe and effective cannabinoid medications.”

Illustration of the CB1 receptor.

“New research is providing a more detailed view into the structure of the human cannabinoid (CB1) receptor. These findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol (THC)—a primary chemical in marijuana—bind at the CB1 receptor to produce their effects. The research was funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health.”

https://www.nih.gov/news-events/news-releases/structure-primary-cannabinoid-receptor-revealed

“‘Marijuana receptor’ uncovered in new study”  http://www.medicalnewstoday.com/articles/313564.php

Chronic stress leads to epigenetic dysregulation of neuropeptide-Y and cannabinoid CB1 receptor in the mouse cingulate cortex.

Image result for Neuropharmacology

“Persistent stress triggers a variety of mechanisms, which may ultimately lead to the occurrence of anxiety- and depression-related disorders.

Epigenetic modifications represent a mechanism by which chronic stress mediates long-term effects. Here, we analyzed brain tissue from mice exposed to chronic unpredictable stress (CUS), which induced impaired emotional and nociceptive behaviors.

As endocannabinoid (eCB) and neuropeptide-Y (Npy) systems modulate emotional processes, we hypothesized that CUS may affect these systems through epigenetic mechanisms.

We found reduced Npy expression and Npy type 1 receptor (Npy1r) signaling, and decreased expression of the cannabinoid type 1 receptor (CB1) in the cingulate cortex of CUS mice specifically in low CB1-expressing neurons.

Our findings suggest that epigenetic alterations in the Npy and CB1 genes represent one of the potential mechanisms contributing to the emotional imbalance induced by CUS in mice, and that the Npy and eCB systems may represent therapeutic targets for the treatment of psychopathologies associated with or triggered by chronic stress states.”

https://www.ncbi.nlm.nih.gov/pubmed/27737789

Hemopressin peptides as modulators of the endocannabinoid system and their potential applications as therapeutic tools.

Image result for Protein and Peptide Letters

“The endocannabinoid system is activated by the binding of natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) as lipophilic messengers to cannabinoid receptors CB1 and CB2.

The endocannabinoid system comprises also many hydrolytic enzymes responsible for the endocannabinoids cleavage, such as FAAH and MAGL. These two enzymes are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists.

Recently a new family of endocannabinoid modulators was discovered; the lead of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g. antinociception, hypophagy, and hypotension.  It is still matter of debate whether this peptide, isolated from the brain of rats is a real neuromodulator of the endocannabinoid system.

Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist for the CB1 receptor and a μ-opioid receptor antagonist.

These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/27748182

Phytocannabinoids: a unified critical inventory.

Image result for natural product reports

“Cannabis sativa L. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.

The modular nature of the pathways that merge into the phytocannabinoid chemotype translates in differences in the nature of the resorcinyl side-chain and the degree of oligomerization of the isoprenyl residue, making the definition of phytocannabinoid elusive from a structural standpoint.

A biogenetic definition is therefore proposed, splitting the phytocannabinoid chemotype into an alkyl- and a β-aralklyl version, and discussing the relationships between phytocannabinoids from different sources (higher plants, liverworts, fungi).

The startling diversity of cannabis phytocannabinoids might be, at least in part, the result of non-enzymatic transformations induced by heat, light, and atmospheric oxygen on a limited set of major constituents (CBG, CBD, Δ9-THC and CBC and their corresponding acidic versions), whose degradation is detailed to emphasize this possibility.

The diversity of metabotropic (cannabinoid receptors), ionotropic (thermos-TRPs), and transcription factors (PPARs) targeted by phytocannabinoids is discussed. The integrated inventory of these compounds and their biological macromolecular end-points highlights the opportunities that phytocannabinoids offer to access desirable drug-like space beyond the one associated to the narcotic target CB1.”