Pro-inflammatory obesity in aged cannabinoid-2 receptor deficient mice.

“Cannabinoid-1 receptor signaling increases the rewarding effects of food intake and promotes the growth of adipocytes, whereas CB2 possibly opposes these pro-obesity effects by silencing the activated immune cells that are key drivers of the metabolic syndrome.

Pro- and anti-orexigenic cannabimimetic signaling may become unbalanced with age because of alterations of the immune and endocannabinoid system…

CB2 agonists may fortify CB2-mediated anti-obesity signaling without the risk of anti-CB1 mediated depression that caused the failure of rimonabant.”

http://www.ncbi.nlm.nih.gov/pubmed/26303348

Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice.

“Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells.

In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System.

In this work, to further elucidate the mechanisms associated to this neuroprotective effect…

Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract.

Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26296704

http://www.thctotalhealthcare.com/category/stroke-2/

Monoacylglycerol Lipase Regulates Fever Response.

“Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.”

http://www.ncbi.nlm.nih.gov/pubmed/26287872

Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors.

“Locus coeruleus (LC) nucleus is involved in noradrenergic descending pain modulation.

LC receives dense orexinergic projections from the lateral hypothalamus. Orexin-A and -B are hypothalamic peptides which modulate a variety of brain functions via orexin type-1 (OX1) and orexin type-2 (OX2) receptors.

Previous studies have shown that activation of OX1 receptors induces endocannabinoid synthesis and alters synaptic neurotransmission by retrograde signaling via affecting cannabinoid type-1 (CB1) receptors.

In the present study the interaction of orexin-A and endocannabinoids was examined at the LC level in a rat model of inflammatory pain…

This data show that, activation of OX1 receptors in the LC can induce analgesia and also the blockade of OX1 or CB1 receptors is associated with hyperalgesia during formalin test.

Our findings also suggest that CB1 receptors may modulate the analgesic effect of orexin-A.

These results outline a new mechanism by which orexin-A modulates the nociceptive processing in the LC nucleus.”

http://www.ncbi.nlm.nih.gov/pubmed/26254729

ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

“Hippocampal neurogenesis plays a very important role in learning and memory functions.

In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties.

The aim of this study was to evaluate the impact of ACEA (arachidonyl-2′-chloroethylamide – a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells’ proliferation and differentiation in the mouse brain.

VPA administered alone decreased the number of newly born neurons with no significant impact on neurogenesis.

These data provide substantial evidence that VPA administered chronically slightly decreases the proliferation and differentiation of newly born cells while combination of VPA+ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.”

http://www.ncbi.nlm.nih.gov/pubmed/26225920

Cannabidiol is a negative allosteric modulator of the type 1 cannabinoid receptor.

“Cannabidiol has been reported to act as an antagonist of cannabinoid agonists at type 1 cannabinoid receptors (CB1 ).

We hypothesized that cannabidiol can inhibit cannabinoid agonist activity through negative allosteric modulation of CB1…

Cannabidiol behaved as a non-competitive negative allosteric modulator of CB1 .

Allosteric modulation, in conjunction with non-CB1 effects, may explain the in vivo effects of cannabidiol.

Allosteric modulators of CB1 have the potential to treat central nervous system and peripheral disorders while avoiding the adverse effects associated with orthosteric agonism or antagonism of CB1.”

http://www.ncbi.nlm.nih.gov/pubmed/26218440

Aiming for allosterism: Evaluation of allosteric modulators of CB1 in a neuronal model.

“Cannabinoid pharmacology has proven nettlesome with issues of promiscuity a common theme among both agonists and antagonists.

One recourse is to develop allosteric ligands to modulate cannabinoid receptor signaling.

Cannabinoids have come late to the allosteric table…

In summary, three of the allosteric modulators evaluated function in a manner consistent with allosterism in a neuronal 2-AG-based model of endogenous cannabinoid signaling.”

http://www.ncbi.nlm.nih.gov/pubmed/26211948

Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions.

“Mitochondrial dysfunction contributes to cell death after cerebral ischemia/reperfusion (I/R) injury.

Cannabinoid CB1 receptor is expressed in neuronal mitochondrial membranes (mtCB1R) and involved in regulating mitochondrial functions under physiological conditions…

In purified neuronal mitochondria, mtCB1R activation attenuated Ca(2+)-induced mitochondrial injury.

In conclusion, mtCB1R is involved in ACEA-induced protective effects on neurons and mitochondrial functions, suggesting mtCB1R may be a potential novel target for the treatment of brain ischemic injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26215450

Synergistic anti-allodynic effects of nociceptin/orphanin FQ and cannabinoid systems in neuropathic mice.

“Combinations of analgesics from different classes are commonly used in the management of chronic pain. The goal is to enhance pain relief together with the reduction of side effects.

The present study was undertaken to examine the anti-allodynic synergy resulting from the combination of WIN 55,212-2, a cannabinoid CB1 receptor agonist, and JTC-801, a nociceptin/orphanin FQ receptor antagonist, on neuropathic pain…

In conclusion, co-administration of acannabinoid with a nociceptin/orphanin FQ receptor antagonist resulted in a synergistic interaction, which may have utility in the pharmacological treatment of neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/21664922

Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

“The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors.

Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer).

In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6) and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL).

HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression.

Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6.

The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.”

http://www.ncbi.nlm.nih.gov/pubmed/26189725