The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone.

“Evidence suggests that the cannabinoid system is involved in the maintenance of opioid dependence. We examined whether dronabinol, a cannabinoid receptor type 1 partial agonist, reduces opioid withdrawal and increases retention in treatment with extended release naltrexone (XR-naltrexone).

CONCLUSION:

Dronabinol reduced the severity of opiate withdrawal during acute detoxification but had no effect on rates of XR-naltrexone treatment induction and retention. Participants who elected to smoke marijuana during the trial were more likely to complete treatment regardless of treatment group assignment.”

http://www.ncbi.nlm.nih.gov/pubmed/26187456

Interaction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice.

“The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety.

In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons.

In this study, we tested the hypothesis that TRPV1 channel is involved in the modulation of cannabinoid effects on pentylenetetrazole (PTZ)-induced seizure threshold…

The anticonvulsant actions of both capsazepine and ACEA were attenuated after co-administration of these compounds. Moreover, the anticonvulsant action of capsazepine was attenuated after co-administration with VDM11.

The results suggest an interaction between cannabinoidergic system and TRPV1 receptors in protection against acute PTZ-induced seizure in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26185513

Exploring structural requirements for peripherally acting 1,5-diaryl pyrazole-containing cannabinoid 1 receptor antagonists for the treatment of obesity.

“Peripherally acting cannabinoid 1 (CB1) receptor antagonists are considered as potential therapeutics for the treatment of obesity with desired efficacy and reduced central nervous system side effects.

The prediction accuracy and reliability of the best developed CoMSIA model have been validated using well-established methods. Using the inputs from the best CoMSIA contour maps, several novel highly selective peripherally acting CB1 receptor antagonists have been designed and reported herein.”

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus.

“Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system.

Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus.

In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response.

Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24510751

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor.

“Homocysteine (Hcy) is a high risk factor for Alzheimer’s disease (AD). Caudate nucleus (CN), the major component of basal ganglia in the brain, is also involved in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the true natural ligand for cannabinoid type-1 (CB1) receptors and the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in the hippocampus and CN.

In the present work, we explored that 2-AG significantly protects CN neurons in culture against Hcy-induced response.

2-AG is capable of inhibiting elevation of Hcy-induced cyclooxygenase-2 expression associated with nuclear factor-kappaB/p38MAPK/ERK1/2 signaling pathway through CB1 receptors-dependent way in primary cultured CN neurons.

Our study reveals the therapeutic potential for 2-AG for the treatment of neurodegenerative diseases, such as AD.”

http://www.ncbi.nlm.nih.gov/pubmed/25007951

Effect of Homocysteine on Voltage-Gated Sodium Channel Currents in Primary Cultured Rat Caudate Nucleus Neurons and Its Modulation by 2-Arachidonylglycerol.

“Homocysteine (Hcy) is an important risk factor for Alzheimer’s disease (AD) and other neurodegenerative diseases. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects from many stimuli in the central nervous system (CNS).

Furthermore, it has been reported that voltage-gated sodium channels (VGSCs) are the common targets of many neuronal damages and drugs.

However, it is still not clear whether VGSCs are involved in the neurotoxicity of Hcy and the neuroprotective effect of 2-AG in CN neurons. In the present study, whole-cell patch clamp recording was used to invest the action of Hcy on sodium currents in primary cultured rat CN neurons and its modulation by 2-AG.

The results showed that in cultured CN neurons, pathological concentration of Hcy (100 μM) significantly increased the voltage-gated sodium currents (I Na) and produced a hyperpolarizing shift in the activation-voltage curve of I Na.

The further data demonstrated 2-AG is capable of suppressing elevation of Hcy-induced increase in I Na and hyperpolarizing shift of activation curves most partly through CB1 receptor-dependent way.

Our study provides a better understanding of Hcy-associated neurological disorders and suggests the therapeutic potential for 2-AG for the treatment of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26179279

The Endocannabinoid System in Renal Cell: Regulation of Na+ Transport by CB1 Receptors Through Distinct Cell Signaling Pathways.

“The function of the endocannabinoid system (ECS) in the renal tissue is not completely understood.

We studied the effect of compounds modulating the activity of cannabinoid CB receptors on the active reabsorption of Na+ in LLC-PK1 cells.

CONCLUSION AND IMPLICATIONS: ECS is expressed in LLC-PK1 cells. Both TRPV1 and CB1 regulate (Na++K+)-ATPase activity in these cells, and are modulated by lipid and peptide CB1 ligands, which act via different signaling pathways”

.http://www.ncbi.nlm.nih.gov/pubmed/25537261

The endocannabinoid system in renal cell: Regulation of Na+ transport by CB1 receptors through distinct cell signaling pathways.

“The function of the endocannabinoid system (ECS) in the renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the reabsorption of 70- 80% of the filtrate.

We studied the effect of compounds modulating the activity of cannabinoid CB receptors on the active reabsorption of Na+ in LLC-PK1 cells.

CONCLUSION AND IMPLICATIONS:

ECS is expressed in LLC-PK1 cells. Both CB1 and TRPV1 regulate (Na+ +K+ )-ATPase activity in these cells, and are modulated by lipid and peptide CB1 ligands, which act via different signaling pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/26177675

[Changes over time of cannabinoid receptor 1 in hippocampus of status epilepticus rats].

To explore the changes over time of cannabinoid receptor 1 (CB1R) in hippocampus of status epilepticus (SE) rats…

There is a protective increase of CB1R in hippocampus of SE rats and then it returns to normal.

Thus CB1R may he involved in the occurrences and terminations of seizures.”

http://www.ncbi.nlm.nih.gov/pubmed/26168676

http://www.thctotalhealthcare.com/category/epilepsy-2/

A comprehensive patents review on cannabinoid 1 receptor antagonists as antiobesity agents.

“Obesity is a rapidly expanding worldwide health problem.

Various targets are investigated presently for the treatment of obesity, but there remains an unmet need for an effective drug therapy with acceptable efficacy levels and reduced side effects.

Targeting peripherally located cannabinoid 1 (CB1) receptors is an attractive strategy as these receptors play a vital role in energy homeostasis.

Areas covered: CB1 receptor antagonists constitute one of the most important categories of compounds of interest for the control of obesity.

In this review, the authors focus on recent advances (since 2007) in diverse chemical classes of patented compounds belonging to the category of CB1 receptor antagonists.

Expert opinion: Safer CB1 receptor antagonists for the treatment of obesity can be discovered by developing such compounds that act peripherally. Increasing the polar service area, decreasing the lipophilicity and designing of neutral antagonists and allosteric inhibitors are some interesting strategies that could offer promising results.”

http://www.ncbi.nlm.nih.gov/pubmed/26161824