The monoacylglycerol lipase inhibitor JZL184 decreases inflammatory response in skeletal muscle contusion in rats.

“Muscle wound healing process is a typical inflammation-evoked event. The monoacylglycerol lipase (MAGL) inhibitor (4-nitrophenyl)4-[bis(1,3-benzodioxol -5-yl)-hydroxymethyl]piperidine-1-carboxylate (JZL184) has been previously reported to reduce inflammation in colitis and acute lung injury in mice, which provide a new strategy for primary care of skeletal muscle injury.

Our findings demonstrate that JZL184 is able to inhibit the inflammatory response and interfere with contused muscle healing, in which the anti-inflammatory action may be mediated through cannabinoid CB1 and CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/25912803

Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception.

Logo of nihpa

“Cannabis has been used for thousands of years as a therapeutic agent for pain relief, as well as for recreational purposes.

Delta-9-Tetrahydrocannabinol (Δ9-THC)… produces antinociceptive effects in a wide range of preclinical assays of pain.

Considerable preclinical research has demonstrated the efficacy of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids.

Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Delta(9)-THC.

These results suggest that various constituents of this plant may interact in a complex manner to modulate pain.

The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model…

Importantly, the antinociceptive effects of Delta(9)-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching.

These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Delta(9)-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Delta(9)-THC.

The results obtained in the present study are consistent with the view that Δ9-THC is the major phytocannabinoid present in marijuana that produces antinociception in the acetic acid abdominal stretching test.

…these results suggest that there is potential to develop medications containing various concentrations of specific phytocannabinoids to optimize therapeutic effects (e.g., antinociception) and minimize psychomimetic effects.

In sum, the results of the present study further support the notion that Δ9-THC is the predominant constituent of marijuana that is responsible for eliciting antinociceptive effects and indicate that CB1 receptors play a predominant role in mediating these effects.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/

http://www.thctotalhealthcare.com/category/pain-2/

Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice.

“There is evidence to suggest that a dysregulation of endocannabinoid signaling may contribute to the etiology and pathophysiology of migraine.

Thus, patients suffering from chronic migraine or medication overuse headache showed alterations in the activity of the arachidonoylethanolamide (AEA) degrading enzyme fatty acid amide hydrolase (FAAH) and a specific AEA membrane transporter, alongside with changes in AEA levels.

The precise role of different endocannabinoid system components is, however, not clear. We have therefore investigated mice with a genetic deletion of the two main cannabinoid receptors CB1 and CB2, or the main endocannabinoid degrading enzymes, FAAH and monoacylglycerol lipase (MAGL), which degrades 2-arachidonoylglycerol (2-AG), in a nitroglycerine-induced animal model of migraine.

The effects of the genetic deletion of pharmacological blockade of FAAH are mediated by CB1 receptors, because they were completely disrupted with the CB1 antagonist rimonabant.

These results identify FAAH as a target for migraine pharmacotherapy.”

http://www.ncbi.nlm.nih.gov/pubmed/25910421

http://www.thctotalhealthcare.com/category/headachemigraine/

The endocannabinoid system in obesity and type 2 diabetes.

“Endocannabinoids (ECs) are defined as endogenous agonists of cannabinoid receptors type 1 and 2 (CB1 and CB2). ECs, EC anabolic and catabolic enzymes and cannabinoid receptors constitute the EC signalling system. This system participates in the control of lipid and glucose metabolism at several levels, with the possible endpoint of the accumulation of energy as fat.

Following unbalanced energy intake, however, the EC system becomes dysregulated, and in most cases overactive, in several organs participating in energy homeostasis, particularly, in intra-abdominal adipose tissue. This dysregulation might contribute to excessive visceral fat accumulation and reduced adiponectin release from this tissue, and to the onset of several cardiometabolic risk factors that are associated with obesity and type 2 diabetes.

This phenomenon might form the basis of the mechanism of action of CB1 antagonists/inverse agonists, recently developed by several pharmaceutical companies as adjuvants to lifestyle modification for weight reduction, glycaemic control and dyslipidaemia in obese and type 2 diabetes patients.

It also helps to explain why some of the beneficial actions of these new therapeutics appear to be partly independent from weight loss.”

http://www.ncbi.nlm.nih.gov/pubmed/18563385

http://www.thctotalhealthcare.com/category/obesity-2/

http://www.thctotalhealthcare.com/category/diabetes/

Role of the endocannabinoid system in management of patients with type 2 diabetes mellitus and cardiovascular risk factors.

“To review the role of the endogenous cannabinoid system (ECS) in the peripheral and central regulation of food intake, appetite, and energy storage and discuss the potential for the ECS to be an important target for lowering cardiovascular risk…

The ECS has been shown to have a key role in the regulation of energy balance, and modulation of this system may affect multiple cardiometabolic risk factors.

Clinical studies involving pharmacologic blockade of CB1 receptors in overweight patients with and without type 2 diabetes have demonstrated effective weight loss and improvements in several risk factors for cardiovascular disease.”

http://www.ncbi.nlm.nih.gov/pubmed/18194939

http://www.thctotalhealthcare.com/category/diabetes/

Differential Pharmacological Regulation of Sensorimotor-Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations.

“The endocannabinoid system has been widely involved in the pathophysiology of sensorimotor gating deficits. The present study is aimed to evaluate the pharmacological modulation of the sensorimotor gating impairment induced by cannabinoid CB1 receptor (CB1r) deletion…

These data further support the important role of CB1r in sensorimotor gating regulation and the therapeutic usefulness of methylphenidate for the treatment of psychiatric disorders with associated pre-attentional deficits.”

http://www.ncbi.nlm.nih.gov/pubmed/25895455

Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals.

“The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals.

Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.”

http://www.ncbi.nlm.nih.gov/pubmed/25891347

Cannabinoids Inhibit T-cells via Cannabinoid Receptor 2 in an in vitro Assay for Graft Rejection, the Mixed Lymphocyte Reaction

Logo of nihpa

 

“Cannabinoids are known to have anti-inflammatory and immunomodulatory properties.

Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes.

This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion…

Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

Cannabinoids were reported to have effects on immune responses as early as the 1970s, but the basis for this activity was not understood until the cannabinoid receptors were cloned

Ideally, the anatomically disparate expression of CB1 and CB2 would allow for the use of compounds selective for CB2, and thus eliminate the unwanted psychoactive effects from CB1 activation, while maintaining the anti-inflammatory and immunosuppressive properties.

CB2-selective cannabinoids have been proposed as possible candidates to block graft rejection.

The results presented in this paper show that Δ9-THC, a mixed CB1/CB2 agonist, and two CB2-selective agonists can inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ and skin graft rejection.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864984/

CB 1Cannabinoid Receptor Agonist Inhibits Matrix Metalloproteinase Activity in Spinal Cord Injury: A Possible Mechanism of Improved Recovery.

“Increased matrix metalloproteinase (MMP) activity contributes to glial scar formation that inhibits the repair path after spinal cord injury (SCI). We examined whether treatment with N-​(2-​chloroethyl)-​5Z,​8Z,​11Z,​14Z-​eicosatetraenamide (ACEA), a selective synthetic cannabinoid receptor (CB1R) agonist, inhibits MMP and improves functional and histological recovery in a mouse spinal cord compression injury model…

Collectively these data demonstrate that post-injury CB1R agonism can improve SCI outcome and also indicate marked attenuation of MMP-9 proteolytic enzyme activity as a biochemical mechanism.”

http://www.ncbi.nlm.nih.gov/pubmed/25881484

http://www.thctotalhealthcare.com/category/spinal-cord-injury/

Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

“Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis.

The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study…

Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.”

http://www.ncbi.nlm.nih.gov/pubmed/25870539