Negative Regulation of Leptin-induced ROS Formation by CB1 Receptor Activation in Hypothalamic Neurons.

“The adipocyte-derived, anorectic hormone, leptin, was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of ROS levels in arcuate nucleus (ARC) neurons.

Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity.

Here we investigated the possibility of a negative regulation by CB1 receptor of leptin-mediated ROS formation in the ARC…

We conclude that CB1 activation reverses leptin-induced ROS formation, and hence possibly some of the ROS-mediated effects of the hormone, by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity.

This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.”

CB1 receptors modulate affective behaviour induced by neuropathic pain.

“Patients suffering from chronic pain are often also diagnosed with a psychiatric condition, in particular generalized anxiety and major depression. The underlying pathomechanisms contributing to this comorbidity, however, are not entirely clear.

In this manuscript we have focussed on the potential role of the cannabinoid receptor CB1, because it is known to modulate neuronal circuits contributing to chronic pain states and affective behaviours.

For this purpose we analysed the consequences of a partial sciatic nerve ligation on anxiety- and depression related behaviours in mice lacking CB1 receptors.

Our results show that the development of mechanical hypersensitivity was similar in CB1 deficient mice and wild type controls. However, CB1 knockouts showed much more pronounced behavioural manifestations of anxiety-related behaviors in the light-dark and zero-maze tests, sucrose anhedonia, and disturbed home-cage activity.

These results indicate that the endocannabinoid system affects chronic pain-induced mood changes through CB1 receptors.”

Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

“Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction.

The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans.

Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects.

Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25859226

http://www.thctotalhealthcare.com/category/addiction/

Major urinary protein 1 interacts with cannabinoid receptor type 1 in fatty acid-induced hepatic insulin resistance in a mouse hepatocyte model.

“Hepatic insulin resistance (HIR) is a metabolic abnormality characterized by increased gluconeogenesis which usually contributes from an elevation of free fatty acids.

Cannabinoid receptor type 1 (CB1R) and major urinary protein 1 (MUP1) are thought to play pivotal roles in mitochondrial dysfunction, liver steatosis and insulin resistance.

The aim of this study was to explore the role of MUP1 in CB1R-mediated HIR through the dysregulation of mitochondrial function in AML12 mouse hepatocytes challenged with high concentration of free fatty acids (HFFA)…

Altogether, these findings suggest that the anti-HIR effect of AM251 via improvement of mitochondrial functions might occur in a MUP1-dependent manner.”

http://www.ncbi.nlm.nih.gov/pubmed/25843798

The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats.

“Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus.

It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/25843413

Increased Cerebral Cannabinoid-1 Receptor Availability Is a Stable Feature of Functional Dyspepsia: A [F]MK-9470 PET Study.

“Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder (FGID) defined by chronic epigastric symptoms in the absence of organic abnormalities likely to explain them. Comorbidity with mood and anxiety disorders as well as with other FGIDs and functional somatic syndrome (FSS) is high. FD is characterized by abnormal regional cerebral activity in cognitive/affective pain modulatory circuits, but it is unknown which neurotransmitter systems are involved.

The authors aimed to assess and compare in vivo cerebral cannabinoid-1 (CB1) receptor availability between FD patients and age-, gender- and BMI-matched healthy controls (HC).

FD patients had significantly higher CB1 receptor availability in the cerebral regions involved in (visceral) nociception (brainstem, insula, anterior cingulate cortex) as well as in the homeostatic and hedonic regulation of food intake [hypothalamus, (ventral) striatum]….

Although these findings need replication in larger samples, they suggest that the abnormal brain activity in several of these regions, previously demonstrated in FD, may be due to a sustained endocannabinoid system dysfunction, identifying it as a potential novel target for treatment and warranting further studies to elucidate whether it is also a feature of other FGIDs or FSSs.”

http://www.ncbi.nlm.nih.gov/pubmed/25833408

Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation.

“Endocannabinoids are a family of lipid mediators that are involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood.

Here we examined the expression, localization and function of the enzyme diacylglycerol lipase (DAGLα), involved in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG).

Cannabinoid (CB)1-deficient, wildtype control and C3H/HeJ mice, a genetically constipated model, were used…

DAGLα is expressed in the enteric nervous system and its inhibition reverses slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor mediated mechanisms.

Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.”

http://www.ncbi.nlm.nih.gov/pubmed/25684407

Chronic administration with AM251 improves albuminuria and renal tubular structure in obese rats.

“Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established, however the direct effects of CB1 antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB1 antagonist AM251 in a model of DIO.

Antagonism of CB1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats.

Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGF, TGFb1 and collagen IV in the kidney.

This study demonstrates that treatment with CB1 antagonist AM251 improves renal outcomes in obese rats.”

http://www.ncbi.nlm.nih.gov/pubmed/25804605

Alexandros Makriyannis is a professor in the Department of Medicinal Chemistry at Northeastern University, where his research group has synthesized many new compounds with cannabinoid activity… AM-251 — an inverse agonist at the CB1 cannabinoid receptor that is structurally related to SR141716A (rimonabant), but has a higher binding affinity with a Ki value of 7.5nM.”  http://en.wikipedia.org/wiki/List_of_AM_cannabinoids

Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice.

“We investigated whether glutamate receptor subunit 2 (GluR2) is involved in EA pretreatment-induced neuroprotection via cannabinoid CB1 receptors (CB1R) after global cerebral ischemia in mice…

In conclusion, GluR2 up-regulation is involved in neuroprotection of EA pretreatment against GCI through CB1R, suggesting that GluR2 may be a novel target for stroke intervention.”

http://www.ncbi.nlm.nih.gov/pubmed/25830356

http://www.thctotalhealthcare.com/category/stroke-2/

[Expression of cannabinoid receptor I during mice skin incised wound healing course].

“To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination…

The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury.

The positive bands of CB1R were observed in all time points of the wound healing course…

CONCLUSION:

CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.”

http://www.ncbi.nlm.nih.gov/pubmed/20967946