Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer – TheWashingtonPost

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on.

Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.

It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.”

More: http://articles.washingtonpost.com/2008-08-01/news/36873908_1_colorectal-cancer-tumor-growth-smaller-tumors

Hepatic Cannabinoid Receptor Type 1 Mediates Alcohol-Induced Regulation of Bile Acid Enzyme Genes Expression Via CREBH.

“In this study, we have investigated the effect of alcohol exposure on hepatic bile acid homeostasis and elucidated the mediatory roles of Cb1r and Crebh in this process.

We found that alcohol exposure or Cb1r-agonist 2-AG treatment increases hepatic bile acid synthesis and serum ALT, AST levels in vivo along with significant increase in Crebh gene expression and activation.

 Alcohol exposure activated Cb1r, Crebh, and perturbed bile acid homeostasis…

 Overall, our study demonstrates a novel regulatory mechanism of hepatic bile acid metabolism by alcohol via Cb1r-mediated activation of Crebh, and suggests that targeting Crebh can be of therapeutic potential in ameliorating alcohol-induced perturbation of bile acid homeostasis.”

http://www.ncbi.nlm.nih.gov/pubmed/23894352

CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations.

“Drugs that modulate the endocannabinoid system and endocannabinoids typically play an anticonvulsant role although some proconvulsant effects have been reported both in humans and animal models.

 This study aims to characterize the role of cannabinoids in specific areas of the cortico-thalamic network involved in oscillations that underlie seizures in a genetic animal model of absence epilepsy, the WAG/Rij rat.

These results, together with previous reports, support therapeutic potential for endocannabinoid system modulators in absence epilepsy and highlight that attenuated endocannabinergic function may contribute to the generation and maintenance of seizures. Furthermore, the entire cortico-thalamic network responds to cannabinoid treatment, indicating that in all areas considered, CB receptor activation inhibits the pathological synchronization that subserves absence seizures.

 In conclusion, our result might be useful for the identification of future drug therapies in absence epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/23860329

The Cannabinoid Receptor Agonist THC Attenuates Weight Loss in a Rodent Model of Activity-Based Anorexia

“Anorexia nervosa (AN) is characterized by anhedonia whereby patients experience little pleasure or reward in many aspects of their lives. Reward pathways and the endocannabionid system have been implicated in the mediation of food intake. The potential to exploit these systems to reverse weight loss is investigated in a rodent model of activity-based anorexia (ABA).

Given the powerful role of the endocannabionid system in stimulating reward processes and the apparent poor development of these processes in AN, it is important to test the hypothesis that exogenous administration of cannabinoid type 1 (CB1) receptor agonists can reverse the anorexia displayed in a rodent ABA model…

Importantly, the data presented here show for the first time the efficacy of THC  in retarding the progression of ABA…

In conclusion, these data establish for the first time the effectiveness of THC in rescuing animals from profound body weight loss associated with the development of ABA, independent of physical activity, which is enhanced if allowed access to highly palatable foods.

These results from the animal-based model of AN highlight the potential of cannabinoids and of the endocannabinoid system in the treatment of human anorexia.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096804/

Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition.

“Alzheimer’s disease (AD) is characterized by amyloid-β deposition in amyloid plaques, neurofibrillary tangles, inflammation, neuronal loss, and cognitive deficits. Cannabinoids display neuromodulatory and neuroprotective effects and affect memory acquisition. Here, we studied the impact of cannabinoid receptor type 1 (CB1) deficiency on the development of AD pathology…

…the findings indicate that CB1 deficiency can worsen AD-related cognitive deficits and support a potential role of CB1 as a pharmacologic target.”

http://www.ncbi.nlm.nih.gov/pubmed/23838176

CB1 Cannabinoid Receptor Agonist Prevents NGF-Induced Sensitization of TRPV1 in Sensory Neurons.

“The transient receptor potential vanilloid type 1 channel (TRPV1) and nerve growth factor (NGF) are important mediators of inflammatory pain…

Cannabinoids, by activating CB1 G protein-coupled receptors, produce analgesia in a variety of pain models, though the exact mechanisms are not known. We tested the hypothesis that activation of the CB1 receptor by cannabinoids attenuates NGF-induced TRPV1 sensitization….

These results support the hypothesis that cannabinoids, acting through CB1 receptors, may produce analgesia in part by preventing NGF-induced sensitization of TRPV1 in afferent nociceptor nerve endings.”

http://www.ncbi.nlm.nih.gov/pubmed/23850608

Cannabinoids and Schizophrenia: Therapeutic Prospects.

“Approximately one third of patients diagnosed with schizophrenia do not achieve adequate symptom control with standard antipsychotic drugs (APs).

The endocannabinoid system (ECS) in the brain plays an important role in maintaining normal mental health.

ECS modulates emotion, reward processing, sleep regulation, aversive memory extinction and HPA axis regulation…

The cannabis plant synthesises a large number of pharmacologically active compounds unique to it known as phytocannabinoids. In contrast to the euphoric and pro-psychotic effects of delta-9-tetrahydrocannabinol (THC), certain non-intoxicating phytocannabinoids have emerged in pre-clinical and clinical models as potential APs.

Since the likely mechanism of action does not rely upon dopamine D2 receptor antagonism, synergistic combinations with existing APs are plausible.

The anti-inflammatory and immunomodulatory effects of the non-intoxicating phytocannabinoid cannabidiol (CBD) are well established and are summarised below.

Preliminary data reviewed in this paper suggest that CBD in combination with a CB1 receptor neutral antagonist could not only augment the effects of standard APs but also target the metabolic, inflammatory and stress-related components of the schizophrenia phenotype.”

http://www.ncbi.nlm.nih.gov/pubmed/23829368

“6”-Azidohex-2″-yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist… 6″-azidohex-2″-yne-cannabidiol was as potent as cannabidiol in producing surmountable antagonism… it is a competitive cannabinoid CB(1) receptor antagonist…it may be a neutral cannabinoid CB(1) receptor antagonist.”  http://www.ncbi.nlm.nih.gov/pubmed/15033394

 

The role of CB1 in immune modulation by cannabinoids.

“There is clear evidence that CB(2), historically referred to as the peripheral cannabinoid receptor, mediates many of the immune modulatory effects of cannabinoids.

 However, cannabinoid receptors cannot be classified simply as central or peripheral since CB(2) has been shown to play a role in the central nervous system (CNS) and CB(1) mediates many immune system effects. Although Cnr1 mRNA and CB(1) protein expression is lower than Cnr2 mRNA or CB(2) protein expression in cells of the immune system, several studies have shown direct modulation of immune function via CB(1) by endogenous and exogenous cannabinoids in T cells, innate cells, and to a lesser extent, B cells.

In addition, indirect, but CB(1)-dependent, mechanisms of immune modulation exist. In fact, the mechanism by which cannabinoids attenuate neuroinflammation via CB(1) is likely a combination of immune suppression and neuroprotection.

 Although many studies demonstrate that agonists for CB(1) are immune suppressive and anti-inflammatory, CB(1) antagonists also exhibit anti-inflammatory properties. Overall, the data demonstrate that many of the immune modulatory effects of cannabinoids are mediated via CB(1).”

http://www.ncbi.nlm.nih.gov/pubmed/23261520

Turned-Off Cannabinoid Receptor Turns on Colorectal Tumor Growth – MDAnderson

“Researchers find CB1 suppresses tumors, a new potential path for treatment, prevention.”

 “New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said.

 “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More:  http://www.mdanderson.org/newsroom/news-releases/2008/turned-off-cannabinoid-receptor-turns-on-colorectal-tumor-growth.html

Turned-off Cannabinoid Receptor Turns On Colorectal Tumor Growth – CB1 Suppresses Tumors, A New Potential Path For Treatment, Prevention

“New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More: http://www.medicalnewstoday.com/releases/117055.php