New Insights of Uterine Leiomyoma Pathogenesis: Endocannabinoid System.

 

“The aim of this study was to determine if components of the endocannabinoid system are modulated in uterine leiomyomas (fibroids). Components studied included cannabinoid receptors 1 (CB1) and 2 (CB2); the G protein-coupled receptor GPR55; transient potential vanilloid receptor 1 (TRPV1) and the endocannabinoid modulating enzymes N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and their N-acylethanolamine (NAE) ligands: N-arachidonylethanolamine (AEA), N-oleoylethanolamine (OEA), and N-palmityolethanaolamine (PEA). MATERIAL AND METHODS Transcript levels of CB1, CB2, TRPV1, GPR55, NAPE-PLD, and FAAH were measured using RT-PCR and correlated with the tissue levels of the 3 NAEs in myometrial tissues. The tissues studied were: 1) fibroids, 2) myometrium adjacent/juxtaposed to the fibroid lesions, and 3) normal myometrium. Thirty-seven samples were processed for NAE measurements and 28 samples were used for RT-PCR analyses. RESULTS FAAH expression was significantly lower in fibroids, resulting in a NAPE-PLD: FAAH ratio that favors higher AEA levels in pre-menopausal tissues, whilst PEA levels were significantly lower, particularly in post-menopausal women, suggesting PEA protects against fibroid pathogenesis. The CB1: CB2 ratio was lower in fibroids, suggesting that loss of CB1 expression affects the fibroid cell phenotype. Significant correlations between reduced FAAH, CB1, and GPR55 expression and PEA in fibroids indicate that the loss of these endocannabinoid system components are biomarkers of leiomyomata. CONCLUSIONS Loss of expression of CB1, FAAH, GPR55, and PEA production are linked to the pathogenesis of uterine fibroids and further understanding of this might eventually lead to better disease indicators or the development of therapeutic potentials that might eventually be used in the management of uterine fibroids.”

https://www.ncbi.nlm.nih.gov/pubmed/30842391

https://basic.medscimonit.com/abstract/index/idArt/914019

β-Caryophyllene, a natural bicyclic sesquiterpene attenuates doxorubicin-induced cardiotoxicity via activation of myocardial cannabinoid type-2 (CB2) receptors in rats.

Chemico-Biological Interactions

“The cannabinoid type 2 receptor (CB2) has recently emerged as an important therapeutic target for cancer as well as cardiovascular diseases. The CB2 receptor downregulation has been reported in solid tumors and cardiovascular diseases, therefore the CB2receptor activation has been considered as a viable strategy for chemotherapy as well as cardioprotection.

In chemotherapy, doxorubicin (DOX) is an important drug that continues to be the mainstay of chemotherapy in solid tumors, leukemia, and lymphoma. However, the use of DOX is often limited due to its lethal cardiotoxicity. Considering the role of CB2 receptors in cardiovascular diseases and cancer, the activation of CB2 receptors may protect against DOX-induced chronic cardiotoxicity in rats.

In the present study, we investigated the cardioprotective effect of a selective CB2 receptor agonist; β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, against DOX-induced chronic cardiotoxicity in rats. AM630, a CB2 receptor antagonist was administered as a pharmacological challenge prior to BCP treatment to demonstrate CB2 receptor mediated cardioprotective mechanism of BCP. DOX (2.5 mg/kg) was injected intraperitoneally once a week for five weeks to induce chronic cardiotoxicity in rats.

BCP was also injected into rats six days a week for a total duration of five weeks. DOX induced a significant decline in cardiac function and oxidative stress evidenced by the depletion of antioxidant enzymes, glutathione, and increased lipid peroxidation. DOX also triggered activation of nuclear factor kappa B (NF-κB) and increased the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and expression of the inflammatory mediators (iNOS and COX-2) in the heart.

Furthermore, DOX also upregulated the expression of pro-apoptotic markers such as Bax, p53, cleaved PARP, active caspase-3 and downregulated anti-apoptotic marker Bcl-2 in the myocardium. BCP treatment exerted significant cardioprotective effect by salvaging the heart tissues, improving cardiac function, mitigating oxidative stress, inflammation, and apoptosis. The histological and ultrastructural studies also appear in line with our findings of biochemical and molecular parameters.

The CB2 receptor-mediated cardioprotective mechanism was further confirmed by the abrogation of the beneficial effects of BCP with prior administration of the CB2 receptor antagonist; AM630.

Our study revealed the novel mechanism of BCP in cardioprotection against DOX-induced chronic cardiotoxicity by the activation of CB2 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/30836069

https://www.sciencedirect.com/science/article/pii/S0009279718316284?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for Systemic Sclerosis.

Biochemical Pharmacology

“The endocannabinoid system(ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids actingas dual PPARγ/CB2agonists, such as VCE-004.8 and Ajulemic acid (AjA), havebeen shown to alleviate skin fibrosis and inflammation in SSc models. Since bothcompounds are being tested in humans, we compared their activities in the bleomycin(BLM) SSc model.Specifically, the pharmacotranscriptomicsignature of the compounds was determined by RNA-Seq changes in the skin of BLM mice treated orallywith AjA or EHP-101, a lipidicformulation of VCE-004.8. While both compounds down-regulatedthe expression of genes involved in the inflammatoryand fibrotic components of the disease and the pharmacotranscriptomicsignatures were similar for both compounds in some pathways, we found keydifferences between the compounds in vasculogenesis. Additionally, we found 28 specific genes withtranslation potential by comparing with a list of humanscleroderma genes. Immunohistochemical analysis revealed that both compounds prevented fibrosis, collagen accumulation andTenascin C (TNC) expression. Theendothelial CD31+/CD34+ cells and telocyteswere reduced in BLM mice and restored only byEHP-101 treatment. Finally, differences were found inplasmatic biomarker analysis; EHP-101, but not AjA, enhanced the expressionof some factors related to angiogenesisand vasculogenesis. Altogether the results indicate that dual PPARγ/CB2agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases. EHP-101 demonstratedunique mechanisms of action related to the pathophysiology of SSc that could be beneficial in the treatment of this complex disease without current therapeutic options.”

https://www.ncbi.nlm.nih.gov/pubmed/30825431

https://www.sciencedirect.com/science/article/abs/pii/S0006295219300772?via%3Dihub

CB2 Receptor Stimulation and Dexamethasone Restore the Anti-Inflammatory and Immune-Regulatory Properties of Mesenchymal Stromal Cells of Children with Immune Thrombocytopenia.

ijms-logo

“Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by antibody-mediated platelet destruction, with a complex and unclear pathogenesis. The impaired immunosuppressive capacity of mesenchymal stromal cells in ITP patients (ITP-MSCs) might play a role in the development of the disease. Correcting the MSC defects could represent an alternative therapeutic approach for ITP.

High-dose dexamethasone (HD-Dexa) is the mainstay of the ITP therapeutic regimen, although it has several side effects. We previously demonstrated a role for cannabinoid receptor 2 (CB₂) as a mediator of anti-inflammatory and immunoregulatory properties of human MSCs.

We analyzed the effects of CB₂ stimulation, with the selective agonist JWH-133, and of Dexa alone and in combination on ITP-MSC survival and immunosuppressive capacity. We provided new insights into the pathogenesis of ITP, suggesting CB₂ receptor involvement in the impairment of ITP-MSC function and confirming MSCs as responsive cellular targets of Dexa. Moreover, we demonstrated that CB₂ stimulation and Dexa attenuate apoptosis, via Bcl2 signaling, and restore the immune-modulatory properties of MSCs derived from ITP patients.

These data suggest the possibility of using Dexa in combination with JWH-133 in ITP, reducing its dose and side effects but maintaining its therapeutic benefits.”

https://www.ncbi.nlm.nih.gov/pubmed/30823385

https://www.mdpi.com/1422-0067/20/5/1049

Crystal Structure of the Human Cannabinoid Receptor CB2

Figure thumbnail fx1

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”
“Study reveals the structure of the 2nd human cannabinoid receptor”   HTTPS://MIPT.RU/ENGLISH/NEWS/STUDY_REVEALS_THE_STRUCTURE_OF_THE_2ND_HUMAN_CANNABINOID_RECEPTOR

Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis.

Image result for hindawi journal

“Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women.

Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis.

Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not.

RESULTS:

In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis.

CONCLUSION:

The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30800671

“In conclusion, we found a significant decrease in the cannabinoid receptors CB1 and CB2 in the eutopic and ectopic endometrium of patients with adenomyosis, regardless of the menstrual phase, suggesting that CB1 and CB2 participate in the pathogenesis of this condition.”

https://www.hindawi.com/journals/bmri/2019/5468954/

Cannabinoid receptor 2 deficiency exacerbates inflammation and neutrophil recruitment.

“Cannabinoid receptor (CB)2 is an immune cell-localized GPCR that has been hypothesized to regulate the magnitude of inflammatory responses.

However, there is currently no consensus as to the mechanism by which CB2 mediates its anti-inflammatory effects in vivo. To address this question, we employed a murine dorsal air pouch model with wild-type and CB2-/- 8-12-wk-old female and male C57BL/6 mice and found that acute neutrophil and lymphocyte antigen 6 complex, locus Chi monocyte recruitment in response to Zymosan was significantly enhanced in CB2-/- mice.

Additionally, levels of matrix metalloproteinase 9 and the chemokines C-C motif chemokine ligand (CCL)2, CCL4, and C-X-C motif chemokine ligand 10 in CB2-/- pouch exudates were elevated at earlier time points. Importantly, using mixed bone marrow chimeras, we revealed that the proinflammatory phenotype in CB2-/- mice is neutrophil-intrinsic rather than stromal cell-dependent. Indeed, neutrophils isolated from CB2-/- mice exhibited an enhanced migration-related transcriptional profile and increased adhesive phenotype, and treatment of human neutrophils with a CB2 agonist blocked their endothelial transmigration.

Overall, we have demonstrated that CB2 plays a nonredundant role during acute neutrophil mobilization to sites of inflammation and, as such, it could represent a therapeutic target for the development of novel anti-inflammatory compounds to treat inflammatory human diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/30799631

https://www.fasebj.org/doi/10.1096/fj.201802524R

Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome.

Neurogastroenterology & Motility banner

“Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive.

The endocannabinoid system is emerging as an important modulator of gastrointestinal (GI) motility in multiple diseases, but its involvement in IBS is unknown.

We aimed to determine whether cannabinoid 2 (CB2) receptor modulates intestinal motility associated with stress-induced IBS.

CONCLUSION:

CB2 receptor may exert an important inhibitory effect in stress-induced colonic hypermotility by modulating NO synthesis through p38 mitogen-activated protein kinase signaling. AM1241 could be used as a potential drug to treat disorders with colonic hypermotility.”

https://www.ncbi.nlm.nih.gov/pubmed/30793435

https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.13555

Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2(CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical section were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30738036

https://www.sciencedirect.com/science/article/pii/S0028390819300462?via%3Dihub

Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer.

 Proceedings of the National Academy of Sciences: 116 (6)

“Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted.

Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB2R. We show that HER2 physically interacts with CB2R in breast cancer cells, and that the expression of these heteromers correlates with poor patient prognosis.

The cannabinoid Δ9-tetrahydrocannabinol (THC) disrupts HER2-CB2R complexes by selectively binding to CB2R, which leads to (i) the inactivation of HER2 through disruption of HER2-HER2 homodimers, and (ii) the subsequent degradation of HER2 by the proteasome via the E3 ligase c-CBL. This in turn triggers antitumor responses in vitro and in vivo. Selective targeting of CB2R transmembrane region 5 mimicked THC effects.

Together, these findings define HER2-CB2R heteromers as new potential targets for antitumor therapies and biomarkers with prognostic value in HER2-positive breast cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/30733293

https://www.pnas.org/content/early/2019/02/06/1815034116

“Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer” http://www.ncbi.nlm.nih.gov/pubmed/25855725
“Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.” https://www.ncbi.nlm.nih.gov/pubmed/29940172