Cutting Edge: Dysregulated Endocannabinoid-Rheostat for Plasmacytoid Dendritic Cell Activation in a Systemic Lupus Endophenotype.

The Journal of Immunology

“Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by loss of tolerance toward self nuclear Ags. Systemic induction of type I IFNs plays a pivotal role in SLE, a major source of type I IFNs being the plasmacytoid dendritic cells (pDCs). Several genes have been linked with susceptibility to SLE in genome-wide association studies. We aimed at exploring the role of one such gene, α/β-hydrolase domain-containing 6 (ABHD6), in regulation of IFN-α induction in SLE patients. We discovered a regulatory role of ABHD6 in human pDCs through modulating the local abundance of its substrate, the endocannabinoid 2-arachidonyl glycerol (2-AG), and elucidated a hitherto unknown cannabinoid receptor 2 (CB2)-mediated regulatory role of 2-AG on IFN-α induction by pDCs. We also identified an ABHD6High SLE endophenotype wherein reduced local abundance of 2-AG relieves the CB2-mediated steady-state resistive tuning on IFN-α induction by pDCs, thereby contributing to SLE pathogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/30728209

http://www.jimmunol.org/content/early/2019/02/05/jimmunol.1801521

Activation of the cannabinoid CB2 receptor increases renal perfusion.

Physiological Genomics 0 0 cover image

“Acute kidney injury (AKI) is an increasing problem clinically and is associated with chronic kidney disease progression.

Cannabinoid type 2 receptor activation has been shown to mitigate some of the deleterious tubular effects due to AKI, but its role on the renal vasculature has not been fully described.

In this study, we investigated the effects of our novel cannabinoid CB2 receptor agonist, SMM-295, on renal vasculature by assessing cortical perfusion using laser Doppler flowmetry and changes in luminal diameter using isolated afferent arterioles.

These data provide new insight into the potential benefit of SMM-295 by activating vascular and non-vascular CB2 receptors to promote renal vasodilation, and provide a new therapeutic target to treat renal injuries that impact renal blood flow dynamics.”

Diet-Induced Obesity in Cannabinoid-2 Receptor Knockout Mice and Cannabinoid Receptor 1/2 Double-Knockout Mice.

Obesity banner

“Evidence suggests that cannabinoid-1 receptor (CB1R) activation is associated with increased food intake and body weight gain. Human epidemiological studies, however, show decreased prevalence of obesity in cannabis users.

Given the overlapping and complementary functions of the cannabinoid receptors (CB1R and CB2R), mice lacking CB2R and mice lacking both CB1R and CB2R were studied.

These results indicate that lacking both CB1R and CB2R protected mice from diet-induced obesity, possibly through the prominent role of CB1R in obesity or through an interactive effect of both receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/30699233

https://onlinelibrary.wiley.com/doi/abs/10.1002/oby.22403

Indazolylketones as new multitarget cannabinoid drugs.

European Journal of Medicinal Chemistry

“Multitarget cannabinoids could be a promising therapeutic strategic to fight against Alzheimer’s disease.

In this sense, our group has developed a new family of indazolylketones with multitarget profile including cannabinoids, cholinesterase and BACE-1 activity. A medicinal chemistry program that includes computational design, synthesis and in vitro and cellular evaluation has allowed to us to achieve lead compounds.

In this work, the synthesis and evaluation of a new class of indazolylketones have been performed. Pharmacological evaluation includes functional activity for cannabinoid receptors on isolated tissue. In addition, in vitro inhibitory assays in AChE/BuChE enzymes and BACE-1 have been carried out. Furthermore, studies of neuroprotective effects in human neuroblastoma SH-SY5Y cells and studies of the mechanisms of survival/death in lymphoblasts of patients with Alzheimer’s disease have been achieved.

The results of pharmacological tests have revealed that some of these derivatives (5, 6) behave as CB2 cannabinoid agonists and simultaneously show BuChE and/or BACE-1 inhibition.”

https://www.ncbi.nlm.nih.gov/pubmed/30685536

https://www.sciencedirect.com/science/article/pii/S0223523419300406?via%3Dihub

CB2R agonist prevents nicotine induced lung fibrosis.

 Publication Cover“Nicotine stimulates fibroblast proliferation while increasing inflammation and fibrosis of tissues.

The cannabinoid receptor 1 (CB1R) is mainly located in the CNS, while cannabinoid receptor 2 (CB2R) is located in the immune cells within the body. CB2R regulates inflammatory processes and fibroblast function.

Nicotine induces interstitial lung fibrosis that is enhanced by the CB2R antagonist and diminished by the CB2R agonist. Therefore, the CB2R agonist may offer a protection against fibrosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30675824

https://www.tandfonline.com/doi/abs/10.1080/01902148.2018.1543368?journalCode=ielu20

Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice.

 Image result for psychopharmacology journal“Cannabinoid receptor 2 (CB2R) signaling in the brain is associated with the pathophysiology of depression.

Sickness behavior, characterized by lessened mobility, social interaction, and depressive behavior, is linked with neuroinflammation, oxidative stress, and immune system.

The present study was aimed at evaluating 1-phenylisatin (PI), a CB2R agonist, in sickness behavior.

Our data propose that acute and long-term activation of CB2R might prevent neuroinflammation and oxidative stress-associated sickness behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30666359

Modulation of the Endocannabinoid System Following Central Nervous System Injury.

ijms-logo

“Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression-CIDS).

The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS.

Evidence suggests that cannabinoid type 2 receptor (CB₂R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB₂R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.”

https://www.ncbi.nlm.nih.gov/pubmed/30658442

https://www.mdpi.com/1422-0067/20/2/388

Crystal Structure of the Human Cannabinoid Receptor CB2.

Image result for cell journal

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases.

Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism.

Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”

https://www.ncbi.nlm.nih.gov/pubmed/30639103

https://linkinghub.elsevier.com/retrieve/pii/S0092867418316258

Expression and Preparation of a G-Protein-Coupled Cannabinoid Receptor CB2 for NMR Structural Studies.

Current Protocols in Protein Science banner

“Cannabinoid receptor type II, or CB2 , is an integral membrane protein that belongs to a large class of G-protein-coupled receptors (GPCR)s. CB2 is a part of the endocannabinoid system, which plays an important role in the regulation of immune response, inflammation, and pain.

Information about the structure and function of CB2 is essential for the development of specific ligands targeting this receptor.

We present here a methodology for recombinant expression of CB2 and its stable isotope labeling, purification, and reconstitution into liposomes, in preparation for its characterization by nuclear magnetic resonance (NMR).

Correctly folded, functional CB2 labeled with [13 C,15 N]tryptophan or uniformly labeled with 13 C and 15 N is expressed in a medium of defined composition, under controlled aeration, pH, and temperature conditions.

The receptor is purified by affinity chromatography and reconstituted into lipid bilayers in the form of proteoliposomes suitable for analysis by NMR spectroscopy.”

https://www.ncbi.nlm.nih.gov/pubmed/30624864

https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpps.83

The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation.

Life Sciences

“Neuroinflammation is observed as a routine characterization of neurodegenerative disorders such as dementia, multiple sclerosis (MS) and Alzheimer’s diseases (AD). Scientific evidence propounds both of the neuromodulatory and immunomodulatory effects of CB2 in the immune system. β-Caryophyllene (BCP) is a dietary selective CB2 agonist, which deserves the anti-inflammatory and antioxidant effects at both low and high doses through activation of the CB2 receptor.

METHODS:

In this study, we investigated the protective effects of a broad range concentration of BCP against LPS-induced primary microglia cells inflammation and M1/M2 imbalance and identifying the portion of the involvement of related signaling pathways on BCP effects using pharmacological antagonists of CB2, PPAR-γ, and sphingomyelinase (SMase).

KEY FINDINGS:

The protective effects of BCP on LPS-induced microglia imbalance is provided by the M2 healing phenotype of microglia, releasing the anti-inflammatory (IL-10, Arg-1, and urea) and anti-oxidant (GSH) parameters and reducing the inflammatory (IL-1β, TNF-α, PGE2, iNOS and NO) and oxidative (ROS) biomarkers. Moreover, we showed that BCP exerts its effects through CB2receptors which overproduction of ceramides by SMase at middle to higher concentrations of BCP reduce the protective activity of BCP and results in the activation of the PPAR-γ pathway.

SIGNIFICANCE:

In conclusion, the low concentration of BCP has higher selective anti-inflammatory effects rather than high levels. On this occasion, BCP by modulating the microglia is able to have potential therapeutic effects in neuro-inflammation conditions and microglia cells such as MS and AD.”

https://www.ncbi.nlm.nih.gov/pubmed/30620895

https://www.sciencedirect.com/science/article/abs/pii/S0024320518308610?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”  https://www.ncbi.nlm.nih.gov/pubmed/18574142