β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro.

 

Image result for Exp Ther Med.

“Osteoporosis is induced by the reduction in bone mass through decreased osteoblastic osteogenesis and increased osteoclastic bone resorption, and it is associated with obesity and diabetes. Osteoblasts and adipocytes are derived from bone marrow mesenchymal stem cells. The prevention of osteoporosis is an important public health concern in aging populations. β-caryophyllene, a component of various essential oils, is a selective agonist of the cannabinoid receptor type 2 and exerts cannabimimetic anti-inflammatory effects in animals. The present study aimed to identify the effect of β-caryophyllene on adipogenesis, osteoblastic mineralization and osteoclastogenesis in mouse bone marrow cell cultures in vitro. Bone marrow cells obtained from mouse femoral tissues were cultured in the presence of β-caryophyllene (0.1-100 µM) in vitro. The results revealed that β-caryophyllene stimulated osteoblastic mineralization, and suppressed adipogenesis and osteoclastogenesis. Thus, β-caryophyllene may be used as a therapeutic agent for the prevention and treatment of osteoporosis.”

https://www.ncbi.nlm.nih.gov/pubmed/28105093

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Beta-caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice.

Image result for Br J Pharmacol

“Beta-caryophyllene (BCP) is a plant-derived FDA approved food additive with anti-inflammatory properties. Some of its beneficial effects in vivo reported to involve activation of cannabinoid 2 receptors (CB2) that are predominantly expressed in immune cells. Herein, we evaluated the translational potential of BCP using a well-established model of chronic and binge alcohol-induced liver injury.

CONCLUSIONS:

Given the safety of BCP in humans this food additive has a high translational potential in treating or preventing hepatic injury associated with oxidative stress, inflammation and steatosis.”

https://www.ncbi.nlm.nih.gov/pubmed/28107775

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain.

Image result for J Neurosci

“The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain.

Our data provide evidence that CB2 receptor function emerges in the RVM in persistent inflammation and that selective CB2 receptor agonists may be useful for treatment of persistent inflammatory pain.

SIGNIFICANCE STATEMENT:

These studies demonstrate that endocannabinoid signaling to CB1 and CB2 receptors in adult rostral ventromedial medulla is altered in persistent inflammation. The emergence of CB2 receptor function in the rostral ventromedial medulla provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28100744

Up-regulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis.

Image result for Dis Model Mech

“Targeting the CB2 receptor afforded neuroprotection in SOD1G93A mutant mice, a model of amyotrophic lateral sclerosis (ALS).

The neuroprotective effects of CB2 receptors were facilitated by their up-regulation in the spinal cord in SOD1G93A mutant mice.

Herein, we have investigated whether a similar CB2 receptor up-regulation, as well as parallel changes in other endocannabinoid elements, are evident in the spinal cord of dogs with degenerative myelopathy (DM), caused from mutations in the superoxide dismutase 1 gene (SOD1).

In summary, our results demonstrated a marked up-regulation of CB2 receptors occurring in the spinal cord in canine DM, which was concentrated in activated astrocytes.

Such receptors may be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.”

https://www.ncbi.nlm.nih.gov/pubmed/28069688

Brain cannabinoid receptor 2: expression, function and modulation.

Image result for Acta Pharmacol Sin.

“Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world’s adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.”

https://www.ncbi.nlm.nih.gov/pubmed/28065934

Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity.

Image result for Nat Commun.

“The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.”

Potent immunomodulatory activity of a highly selective cannabinoid CB2 agonist on immune cells from healthy subjects and patients with multiple sclerosis.

Image result for journal of neuroimmunology

“COR167, a novel CB2-selective high affinity agonist, was found to significantly inhibit, in a dose-dependent manner, the proliferation of both peripheral blood mononuclear cells and myelin basic protein-reactive T cell lines from normal healthy subjects and patients with relapsing-remitting multiple sclerosis (MS). In MS, a significantly higher inhibition was observed in patients on treatment with disease modifying drugs compared to those naive to treatment. The inhibitory activity of COR167 was exerted through a mixed mechanism involving atypical and incomplete shift of Th1 phenotype towards Th2 phenotype associated with slight reduction of IL-4 and IL-5 as well as strongly reduced levels of Th17-related cytokines. COR167 was also able to reduce in vitro migration of stimulated immunocompetent cells through human brain endothelium associated with a significant reduction of levels of several chemokines. These findings demonstrate that COR167 exerts potent immunomodulatory effects and confirm the cannabinoid CB2 receptor as a novel pharmacological target to counteract neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/28041663

Medical Cannabis in the Palliation of Malignant Wounds—A Case Report

Image result for journal of pain and symptom management

“Anecdotal accounts of the use of topical extracts from the cannabis plant being used on open wounds date back to antiquity. In modern times, cannabinoid therapies have demonstrated efficacy as analgesic agents in both pharmaceutical and botanical formats. Medical cannabis (MC), also known as medical marijuana,…

The endogenous cannabinoid system, consisting of cannabinoid receptors and their endogenous ligands, is ubiquitous throughout the human bodyAvailable research shows that cancer cells express higher levels of the cannabinoid receptors, CB1 and CB2, relative to their noncancer counterparts, while also demonstrating an overall state of upregulationHuman in vitro studies, using nonmelanoma skin lines, have demonstrated direct induction of tumor cell apoptosis and inhibition of tumor-related angiogenesis, both by way of activation of cannabinoid receptors.

The analgesic outcomes observed in this case are supported by the results of a recent systematic review and meta-analysis of cannabinoids for medical useUnlike intact skin, which is polar and hydrophilic, wounds lack epithelial coverage and are nonpolar and lipophilic. Therefore, lipophilic compounds such as the THC and CBD cannabinoids may be readily absorbed through cutaneous wounds.

Before the use of topical MC oil, the patient’s wound was growing rapidly. Yet, after a few weeks, a modest regression of his malignant wound was observed while the patient used topical MC. This secondary outcome suggests that topical MC may promote antineoplastic activity as per the findings of Casanova et al.

In summary, this is the first case report to demonstrate the potential for MC to provide effective pain and symptom management in the setting of malignant wounds. The rapid onset of analgesia after topical placement suggests that the effects were mediated through absorption of the THC and CBD cannabinoids that subsequently interacted with peripheral nociceptors, immune cells, and cancer cells. The postapplication analgesia may be because of the gastrointestinal absorption of ingested residual MC oil. This case suggests that MC delivered in vaporized and topical oil formats warrants further investigation in human malignancy, including randomized controlled trials capable of establishing long-term efficacy, optimal dosage, schedules of administration, mixture composition, and safety.”

http://www.jpsmjournal.com/article/S0885-3924(16)30328-1/fulltext

“Can Cannabis Oil Help Heal Wounds?”                              http://www.livescience.com/57500-can-medical-cannabis-help-heal-wounds.html

“Oral cancer patient, 44, claims cannabis oil helped to shrink a hole in his cheek that was caused by the disease” http://www.dailymail.co.uk/health/article-4124752/Oral-cancer-patient-44-claims-cannabis-oil-helped-shrink-hole-cheek-caused-disease.html

“Miracle plant: Can medical marijuana heal wounds?” http://www.nydailynews.com/life-style/medical-marijuana-heal-wounds-article-1.3384572

“Cannabis Oil Shows Potential To Heal Cancer Wounds Fast”  http://www.healthaim.com/cannabis-oil-shows-potential-heal-cancer-wounds-fast/71395

Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice.

Image result for j nutr health aging journal

“Cannabinoid– 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation.

Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation.

OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status.

RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue.

CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern.”

Protective effects of trans-caryophyllene on maintaining osteoblast function.

Image result for IUBMB Life.

“Age-related osteoblast dysfunction is the main cause of age-related bone loss.

Trans-caryophyllene (TC) is an important constituent of the essential oils derived from several species of medicinal plants.

In this study, we investigated the effects of TC on osteoblast function in osteoblastic MC3T3-E1 cells. The results indicate that TC caused a significant elevation in collagen content, alkaline phosphatase activity, osteocalcin production, and mineralization, which are the four markers that account for the various stages of osteoblastic differentiation.

Our findings that TC promotes the formation of a mineralized extracellular matrix help to elucidate the role of CB2 signaling in the formation of bone and the maintenance of normal bone mass.”

https://www.ncbi.nlm.nih.gov/pubmed/28026135

“Trans-caryophyllene is a sesquiterpene present in many medicinal plants’ essential oils, such as Ocimum gratissimum and Cannabis sativa.”  https://www.ncbi.nlm.nih.gov/pubmed/24055516