Updating the chemistry and biology of cannabinoid CB2 receptor-specific inverse agonists.

“The cannabinoid CB(2) receptor continues to be an intriguing target for the potential therapeutic benefit of cannabinoids. Because this receptor is significantly found outside the brain, compounds specific for the CB(2) receptor may be free of the side effects that have plagued cannabinoid CB(1) receptor-based therapeutics.

In this review, we will discuss a class of compounds which modulate the constitutive activity of the cannabinoid CB(2) receptor, the inverse agonists. We will discuss recent chemical advances that provide new compounds to investigate the biology based on this pharmacology. We will then discuss new biology associated with the cannabinoid CB(2) receptor for hints of how these compounds can best be utilized in vivo.”

http://www.ncbi.nlm.nih.gov/pubmed/20370714

Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists

Figure 2

“Evidence has emerged suggesting a role for the cannabinoid CB2 receptor in immune cell motility. This provides a rationale for a novel and generalized immunoregulatory role for cannabinoid CB2 receptor-specific compounds…

An ability to control the migration of inflammatory cells to the site of insult is a powerful strategy for the development of immunomodulators. Our work on triaryl bis-sulphones suggest that the cannabinoid CB2 receptor-specific inverse agonists may serve as such immune modulators…

Further studies, using these and other CB2 receptor-specific compounds, will be required to resolve the complex pharmacology of cannabinoids and the cannabinoid CB2 receptor, and to determine the most effective pharmacology to exploit this therapeutic target.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219522/

CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents.

“Marijuana has been used for recreational and medicinal purposes for centuries. Its medicinal use can be traced back to ancient Chinese and Egyptian civilizations…

Cannabinoids are known to interact with CB1 and CB2 receptors expressed in the nervous and immune system, respectively, and mediate a wide range of effects, including anti-inflammatory properties…

The current study suggests that targeting CB2 receptors may constitute a unique treatment modality against inflammatory diseases…

Together, this study suggests that CB2-selective agonists, devoid of psychotropic effect, may serve as novel anti-inflammatory/immunosuppressive agents.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864948/

Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells.

“The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis.

Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity…

Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/17401376

Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor.

The cannabinoid system is evolutionally conserved and is present in invertebrates and vertebrates. One of the best-studied cannabinoids is Δ9-tetrahydrocannabinol (THC), the predominant active component of Cannabis sativa or marijuana.

The marijuana plant has been exploited by humans since their early history and was used for centuries in Asian medicine to reduce the severity of pain, inflammation and asthma. However, only recently have the mechanisms of the medicinal properties of THC begun to be understood. This understanding is largely due to the identification and cloning of two cannabinoid receptors.

The cannabinoid system is now recognized as a regulator of both the nervous and immune systems.

Although marijuana has been used for centuries for the treatment of a variety of disorders, its therapeutic mechanisms are only now being understood.

The best-studied plant cannabinoid, delta9-tetrahydrocannabinol (THC), produced by Cannabis sativa and found in marijuana, has shown evidence of being immunosuppressive in both in vivo and in vitro.

These studies are theoretically in agreement with the suggestions of others that cannabinoid receptor agonists would be beneficial for the treatment of MS in humans.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219523/

Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy.

“The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN)…

The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 beneficialactivation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.

In conclusion, our findings may have important implications for DN. The beneficial effect… makes CB2 agonism an attractive new strategy for the treatment of DN. CB2 activation may also positively affect other diabetes-related complications as CB2 agonists may, under certain conditions, delay progression of atherosclerotic lesions and ameliorate diabetes-induced neuropathic pain…

Our study may thus pave the way for future clinical trials on CB2 agonists in humans.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161308/

Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling.

“The cannabinoid receptor type 2 (CB2) is reduced in podocytes of animals and humans with Type 2 Diabetes Mellitus (T2DM), with activation of CB2 ameliorating albuminuria in animals. As albuminuria also is due to proximal tubule dysfunction, the aim of this study is to investigate tubular expression of CB2 under diabetic conditions in addition to the cell signaling pathways that underlie these changes…

We have demonstrated that internalization of albumin is required to reduce CB2 mRNA and protein expression in proximal tubules in vitro. Consequently, altered expression of CB2 in both the podocytes and tubules may contribute to the albuminuria observed in T2DM.”

http://www.ncbi.nlm.nih.gov/pubmed/24280624

Cannabinoid receptors in atherosclerosis.

“…cannabinoid receptors are potential targets for the treatment of atherosclerosis…

Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana… was shown to inhibit disease progression through pleiotropic effects on inflammatory cells.

The development of novel cannabinoid receptor ligands that selectively target CB2 receptors or pharmacological modulation of the endocannabinoid system might offer novel therapeutic strategies in the treatment of atherosclerosis.

The immunomodulatory capacity of cannabinoids is now well established and suggests a broad therapeutic potential of cannabinoids for a variety of conditions, including atherosclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/16960500

http://www.thctotalhealthcare.com/category/atherosclerosis-2/

Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

“Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types.

Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions…

WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis… these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/20075743

Towards a therapeutic use of selective CB2 cannabinoid receptor ligands for atherosclerosis.

“Atherosclerosis remains the primary cause of heart disease and stroke, causing approximately 50% of all deaths in Western countries. The identification of promising novel anti-atherosclerotic therapies is therefore of great interest and represents a continued challenge to the medical community.

Cannabinoids, such as Delta9-tetrahydrocannabinol (THC), which is the major psychoactive compound of marijuana, modulate immune functions and might therefore be of therapeutic use for the treatment of inflammatory diseases.

The authors have demonstrated recently that oral treatment with low dose THC inhibits atherosclerosis progression in mice through pleiotropic immunomodulatory effects on inflammatory cells. All these effects were mediated via the cannabinoid receptor CB(2), the main cannabinoid receptor expressed on immune cells.

The identification and characterization of cannabinoid derivative that selectively activate CB(2) receptors and are devoid of adverse effects might offer a novel therapeutic strategy for the treatment of atherosclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/19804131

https://www.futuremedicine.com/doi/abs/10.2217/14796678.2.1.49

“Researchers suggest that THC and other cannabinoids, which are active at CB2, the cannabinoid receptor expressed on immune cells, may be valuable in treating atherosclerosis.” https://www.medscape.com/viewarticle/787468