Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver.

“Interleukin (IL)-17 is a proinflammatory and fibrogenic cytokine mainly produced by T-helper (Th)17 lymphocytes, together with the hepatoprotective and antifibrogenic cytokine, IL-22.

Cannabinoid receptor 2 (CB2) is predominantly expressed in immune cells and displays anti-inflammatory and antifibrogenic effects.

In the present study, we further investigated the mechanism underlying antifibrogenic properties of CB2 receptor and explored its effect on the profibrogenic properties of IL-17.

These data demonstrate that CB2 receptor activation decreases liver fibrosis by selectively reducing IL-17 production by Th17 lymphocytes via a STAT5-dependent pathway, and by blunting the proinflammatory effects of IL-17 on its target cells, while preserving IL-22 production.”

http://www.ncbi.nlm.nih.gov/pubmed/23813495

Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists.

“The cannabinoid receptor type 2 (CB2) is a class A GPCR that was cloned in 1993 while looking for an alternative receptor that could explain the pharmacological properties of Δ(9)-tetrahydrocannabinol.

CB2 was identified among cDNAs based on its similarity in amino acid sequence to the CB1receptor and helped provide an explanation for the established effects of cannabinoids on the immune system.

In addition to the immune system, CB2 has widespread tissue expression and has been found in brain, peripheral nervous system, and gastrointestinal tract.

Several “mixed” cannabinoid agonists are currently in clinical use primarily for controlling pain, and it is believed that selective CB2 agonism may afford a superior analgesic agent devoid of the centrally mediated CB1 effects.

Thus, selective CB2 receptor agonists represent high value putative therapeutics for treating pain and other disease states. In this Perspective, we seek to provide a concise update of progress in the field.”

http://www.ncbi.nlm.nih.gov/pubmed/23865723

CB2 cannabinoid receptor mediation of antinociception.

“Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects.

The experiments reported here further test the hypothesis that CB2 receptor activation inhibits nociception…

The CB2 receptor-selective agonist produces antinociceptive… activation of CB2 receptors results in antinociception…

…confirm the potential therapeutic relevance of CB2 cannabinoid receptors for the treatment of acute pain.”

http://www.ncbi.nlm.nih.gov/pubmed/16563625

Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors.

“The efficacy of cannabinoids against high-grade glioma in animal models, mediated by two specific receptors, CB1 and CB2, raised promises for targeted treatment of the most frequent and malignant primary brain tumors.

Unlike the abundantly expressed CB1, the CB2 receptor shows a restricted distribution in normal brain. Although brain tumors constitute the second most common malignancy in children and the prevalence of histological types of brain tumors vary significantly between the adult and pediatric populations, cannabinoid receptor expression in pediatric tumors remains unknown.

In the present study, we compared the expression of the CB2 receptor in paraffin-embedded sections from primary brain tumors of adult and pediatric patients. Most glioblastomas expressed very high levels of CB2 receptors and the expression correlated with tumor grade.

Interestingly, some benign pediatric astrocytic tumors, such as subependymal giant cell astrocytoma (SEGA), which may occasionally cause mortality owing to progressive growth, also displayed high CB2 immunoreactivity.

The high levels of CB2 expression would predestine those tumors to be vulnerable to cannabinoid treatment.

In contrast, all examined cases of embryonal tumors (medulloblastoma and S-PNET), the most frequently diagnosed malignant brain tumors in childhood, showed no or trace CB2 immunoreactivity.

Our results suggest that the CB2 receptor expression depends primarily on the histopathological origin of the brain tumor cells and differentiation state, reflecting the tumor grade.”

http://www.ncbi.nlm.nih.gov/pubmed/17239827

Target-Selective Phototherapy Using a Ligand-Based Photosensitizer for Type 2 Cannabinoid Receptor.

“Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use.

…we developed a phototherapy agent that combines a functional ligand and a near infrared phthalocyanine dye. Our target is type 2 cannabinoid receptor (CB2R), considered an attractive therapeutic target for phototherapy given it is overexpressed by many types of cancers that are located at a surface or can be reached by an endoscope.

Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/24583052

The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain.

“The therapeutic effects of the cannabinoid anandamide and the putative CB2 agonist palmitoylethanolamide were tested in a model of persistent visceral pain (turpentine inflammation of the urinary bladder)…

The results confirm the analgesic potential of endogenous ligands at cannabinoid receptor sites.

The anti-nociceptive effect of the putative CB2 receptor agonist, palmitoylethanolamide, is particularly interesting since it is believed to be a peripherally mediated effect.

This observation might be exploited to separate central psychotropic effects from peripheral analgesic actions of the cannabinoids, under inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/9696473

Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats.

“Cannabinoid receptors are expressed in the urinary bladder and may affect bladder function… CB2 receptors may be a viable target for pharmacological treatment of bladder inflammation and associated pain…

In this study, we have shown that CB1 and CB2 are present in the bladder and its innervation, and that expression of CB2 is increased in the bladders of rats with acute and chronic cystitis. Bladder inflammation and pain is the summation of a number of biological events, including participation of the endocannabinoid system.

The endocannabinoid system could play an important role in modulation of severity of bladder inflammation and pain, and it may be possible to take advantage of the cannabinoid system in the bladder to decrease inflammation and resultant pain.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592089/

Treatment with a Cannabinoid Receptor 2 Agonist Decreases Severity of Established Cystitis.

“We investigated whether treatment with the selective cannabinoid receptor 2 agonist… would ameliorate the severity of experimental cystitis…

Treatment with a selective cannabinoid receptor 2 agonist decreased severity of established acrolein induced cystitis and inhibited bladder inflammation associated increased referred mechanical sensitivity and increased bladder urinary frequency.

Our data indicate that cannabinoid receptor 2 is a potential therapeutic target for treatment of painful inflammatory bladder diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/24184363

Activation of cannabinoid receptor 2 inhibits experimental cystitis.

“Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1and CB2). Both CB1 and CB2 are present in bladders of various species, including human, monkey, and rodents, and it appears that CB2 is highly expressed in urothelial cells…

The results of the current study indicate that CB2 is a potential therapeutic target for treatment of bladder inflammation and pain in patients.”

http://www.ncbi.nlm.nih.gov/pubmed/23515618

1,2-Dihydro-2-oxopyridine-3-carboxamides: The C-5 substituent is responsible for functionality switch at CB2 cannabinoid receptor.

“The relevance of CB2R-mediated therapeutic effects is well-known for the treatment of inflammatory and neuropathic pain and neurodegenerative disorders. In our search for new cannabinoid receptor modulators, we report the optimization of a series of 1,2-dihydro-2-oxopyridine-3-carboxamide derivatives as CB2R ligands…”

http://www.ncbi.nlm.nih.gov/pubmed/24518874