Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells

 “Pancreatic adenocarcinomas are among the most malignant forms of cancer and, therefore, it is of especial interest to set new strategies aimed at improving the prognostic of this deadly disease. The present study was undertaken to investigate the action of cannabinoids, a new family of potential antitumoral agents, in pancreatic cancer. We show that cannabinoid receptors are expressed in human pancreatic tumor cell lines …

 Cannabinoids… reduced the growth of tumor cells in two animal models of pancreatic cancer. In addition, cannabinoid treatment inhibited the spreading of pancreatic tumor cells. Moreover, cannabinoid administration selectively increased apoptosis and TRB3 expression in pancreatic tumor cells but not in normal tissue… results presented here show that cannabinoids lead to apoptosis of pancreatic tumor cells via a CB2 receptor and de novo synthesized ceramide-dependent up-regulation of p8 and the endoplasmic reticulum stress–related genes ATF-4 and TRB3.

 These findings may contribute to set the basis for a new therapeutic approach for the treatment of pancreatic cancer.

In conclusion, results presented here show that cannabinoids exert a remarkable antitumoral effect on pancreatic cancer cells in vitro and in vivo…

 These findings may help to set the basis for a new therapeutic approach for the treatment of this deadly disease.”

http://www.420magazine.com/forums/pancreatic-cancer/145013-cannabinoids-induce-apoptosis-pancreatic-tumor-cells.html

 

Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells via Endoplasmic Reticulum Stress–Related Genes

 

Full text: http://cancerres.aacrjournals.org/content/66/13/6748.long

Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors.

“The aim of this study was to explore the effects of CB(2) receptor agonist and antagonist in the regulation of anxiety-like behaviours…The opposing behavioural and molecular changes observed after chronic treatment… support the key role of CB(2) receptors in the regulation of anxiety. Indeed, the efficacy in reducing the anxiety of the spontaneously anxious strain of mice strengthens the potential of the CB(2) receptor as a new target in the treatment of anxiety-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21838753

Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice.

“Overexpression of CB2r reduced anxiety-like behaviours in… mice…

 Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/20837564

Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses.

“Cannabinoid agonists are potential therapeutic agents because of their antinociceptive and anxiolytic-like effects…

These results dissociate the role of anandamide and 2-arachidonoylglycerol in memory consolidation and anxiety and reveal the interest of cannabinoid receptor 2 as a novel target for the treatment of anxiety-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21684528

The development of cannabinoid CBII receptor agonists for the treatment of central neuropathies.

“Cannabinoids have been used in the treatment of nausea and emesis, anorexia and cachexia, tremor and pain associated with multiple sclerosis. These treatments are limited by the psychoactive side-effects of CBI activation. Recently CBII has been described within the CNS, both in microglia and neuronal progenitor cells (NPCs), but with few exceptions, not by neurons within the CNS.

This has suggested that CBII agonists could have potential to treat various conditions without psycho-activity.

This article reviews the potential for CBII agonists as treatments for neurological conditions, with a focus on microglia and NPCs as drug targets. We first discuss the role of microglia in the healthy brain, and then the role of microglia in chronic neuroinflammatory disorders, including Alzheimer’s disease and Parkinson’s disease, as well as in neuroinflammation following acute brain injury such as stroke and global hypoxia. As activation of CBII receptor on microglia results in suppression of the proliferation and activation of microglia, there is potential for the anti-inflammatory properties of CBII agonist to treat neuropathologies that involve heightened microglia activity. In addition, activating CBII receptors may result in an increase in proliferation and affect migration of NPCs.Therefore, it is possible that CBII agonists may assist in the treatment of neuropathologies by increasing neurogenesis…”

http://www.ncbi.nlm.nih.gov/pubmed/20236042

Activation of the CB(2) receptor system reverses amyloid-induced memory deficiency.

“Cannabinoid type 2 (CB(2)) agonists are neuroprotective and appear to play modulatory roles in neurodegenerative processes in Alzheimer’s disease. We have studied the effect of 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl) carbonyl) piperidine (MDA7)-a novel selective CB(2) agonist that lacks psychoactivity-on ameliorating the neuroinflammatory process, synaptic dysfunction, and cognitive impairment 

 Our findings suggest that MDA7 is an innovative therapeutic approach for the treatment of Alzheimer’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/22795792

The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages.

“The endocannabinoid system is a promising therapeutic target in a wide variety of diseases. However, the non-desirable psychotropic effects of natural and synthetic cannabinoids have largely counteracted their clinical usefulness. These effects are mostly mediated by cannabinoid receptors of the CB(1) type, that exhibit a wide distribution in neuronal elements of the CNS. Thus, the presence of other elements of this system in the CNS, such as CB(2) receptors, may open new possibilities for the development of cannabinoid-based therapies. These receptors are almost absent from the CNS in normal conditions but are up-regulated in glial cells under chronic neuroinflammatory stimuli, as has been described in Alzheimer’s disease. To understand the functional role of these receptors, we tested their role in the process of beta-amyloid removal, that is currently considered as one of the most promising experimental approaches for the treatment of this disease.

Our results show that a CB(2) agonist (JWH-015) is capable of inducing the removal of native beta-amyloid removal from human frozen tissue sections as well as of synthetic pathogenic peptide by a human macrophage cell line (THP-1). Remarkably, this effect was achieved at low doses and was specific for this type of cells, as U373MG astrocytoma cells did not respond to the treatment. The effect was CB(2)-mediated, at least partially, as the selective CB(2) antagonist SR144528 prevented the JWH-015-induced plaque removal in situ.

 These data corroborate the possible therapeutic interest of CB(2) cannabinoid specific chemicals in the treatment of Alzheimer’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/19505450

CB(2) receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients.

“The cannabinoid system seems to play an important role in various neurodegenerative diseases including Alzheimer’s disease (AD). The relationship of cannabinoid receptors (CB(1)R and CB(2)R) to cognitive function and neuropathological markers in AD remains unclear. In the present study, postmortem cortical brain tissues (Brodmann area 10) from a cohort of neuropathologically confirmed AD patients and age-matched controls were used to measure CB(1)R and CB(2)R by immunoblotting. Correlational analyses were performed for the neurochemical and cognitive data. CB(1)R expression was significantly decreased in AD. Levels of CB(1)R correlated with hypophagia, but not with any AD molecular marker or cognitive status (Mini Mental State Examination score). The level of CB(2)R was significantly higher (40%) in AD. Increases in the expression of the glial marker glial fibrillar acidic protein were also found. CB(2)R expression did not correlate with cognitive status. Interestingly, expression levels of CB(2)R correlated with two relevant AD molecular markers, Aβ(42) levels and senile plaque score.

These results may constitute the basis of CB(2)R-based therapies and/or diagnostic approaches.”

http://www.ncbi.nlm.nih.gov/pubmed/22763024

The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration

“THE CANNABINOID CB2 RECEPTOR AS A BIORATIONAL TARGET FOR THE TREATMENT OF NEURODEGENERATION. The presence of CB2 receptors in microglia in the human Alzheimer’s diseased brain suggests that CB2 may provide a novel target for a range of neuropathologies.

 The first approved cannabinoid drugs were analogues of Δ9-tetrahydrocannabinol (Δ9-THC). Dronabinol is a natural isomer of THC that is found in the cannabis plant, and Marinol contains synthetic dronabinol. Marinol, and another analogue nabilone (Cesamet ) are used to prevent nausea and vomiting after treatment with anti-cancer medicines. More recently, GW-100 (Sativex) which combines nearly equal amounts of Δ9-THC and cannabidiol in a whole plant extract from cultivated cannabis, has been approved in Canada…

We conclude that the administration of CB2 agonists and antagonists may differentially alter microglia-dependent neuroinflammation. CB2 specific compounds have considerable therapeutic appeal over CB1 compounds, as the exclusive expression of CB2 on immune cells within the brain provides a highly specialised target, without the psychoactivity that plagues CB1 directed therapies.

In addition, CB2 activation appears to prevent or decrease microglial activation.

In a rodent model of Alzheimer’s disease microglial activation was completely prevented by administration of a selective CB2 agonist.”

http://www.ncbi.nlm.nih.gov/pubmed/18615177

Role of CB2 receptors in neuroprotective effects of cannabinoids.

“CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons.

Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimer’s disease, Huntington’s chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis.

 The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.”

 http://www.ncbi.nlm.nih.gov/pubmed/18291574