Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice.

“The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund’s adjuvant 1 week before…

 These results demonstrate that effective analgesia can be achieved in chronic inflammatory settings through the stimulation of spinal cannabinoid CB(2) receptors even if this receptor population is not up-regulated.”

http://www.ncbi.nlm.nih.gov/pubmed/21771590

Central and peripheral sites of action for CB₂ receptor mediated analgesic activity in chronic inflammatory and neuropathic pain models in rats.

“Although the analgesic properties of non-selective cannabinoid receptor agonists have been known for many years, there is now an increasing body of evidence to support the potential utility of selective cannabinoid CB2 receptor agonists for the treatment of pain…

Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in ‘pain relevant’ tissues and the potential sites of action of CB2 agonism in rats.

CONCLUSIONS AND IMPLICATIONS

These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031063/

CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms.

 “These results confirm that CB2 is present in the central nervous system and suggest that CB2 agonists may elicit their analgesic effect by acting not only at non-neuronal peripheral sites but also at neural level, making CB2 an attractive target for chronic pain treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/16553616

Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain.

Abstract

“Cannabinoids suppress behavioural responses to noxious stimulation and suppress nociceptive transmission through activation of CB1 and CB2 receptor subtypes. CB1 receptors are expressed at high levels in the central nervous system (CNS), whereas CB2 receptors are found predominantly, but not exclusively, outside the CNS. CB2 receptors are also upregulated in the CNS and dorsal root ganglia by pathological pain states. Here, we review behavioural, neurochemical and electrophysiological data, which identify cannabinoid CB2 receptors as a therapeutic target for treating pathological pain states with limited centrally, mediated side effects. The development of CB2-selective agonists (with minimal affinity for CB1) as well as mutant mice lacking CB2 receptors has provided pharmacological and genetic tools required to evaluate the effectiveness of CB2 agonists in suppressing persistent pain states. This review will examine the efficacy of cannabinoid CB2-selective agonists in suppressing acute, inflammatory and neuropathic nociception following systemic and local routes of administration. Data derived from behavioural, neurochemical and neurophysiological approaches are discussed to better understand the relationship between antinociceptive effects induced by CB2-selective agonists in behavioural studies and neural mechanisms of pain suppression. Finally, the therapeutic potential and possible limitations of CB2-based pharmacotherapies for pathological pain states induced by tissue and nerve injury are discussed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219541/

Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.

“Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel…

 Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682949/

Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin.

“The present studies were conducted to test the hypothesis that activation of peripheral cannabinoid CB(2) receptors would suppress hyperalgesia evoked by intradermal administration of capsaicin, the pungent ingredient in hot chili peppers.

These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states.”

http://jpet.aspetjournals.org/content/308/2/446.lo

Cannabinoid type 2 receptor as a target for chronic – pain.

Abstract

“Availability of selective pharmacological tools enabled a great advance of our knowledge of cannabinoid receptor 2 (CB2) role in pathophysiology. In particular CB2 emerged as an interesting target for chronic pain treatment as demonstrated by several studies on inflammatory and neuropathic preclinal pain models. The mechanisms at the basis of CB2-mediated analgesia are still controversial but data are pointing out in two main directions: an effect on inflammatory cells and/or an action on nociceptors and spinal cord relay centers. In this review will be described the second messenger pathways activated by CB2 agonists, the data underpinning the analgesic profile of CB2 selective agonists and the mechanisms invoked to explain their analgesic action. Finally the ongoing clinical trials and the potential issues for the development of a CB2 agonist drug will be examined.”

http://www.ncbi.nlm.nih.gov/pubmed/19149657

Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

Abstract

“The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action”

http://www.ncbi.nlm.nih.gov/pubmed/17952647

Targeting CB2 receptors and the endocannabinoid system for the treatment of pain.

Abstract

“The endocannabinoid system consists of the cannabinoid (CB) receptors, CB(1) and CB(2), the endogenous ligands anandamide (AEA, arachidonoylethanolamide) and 2-arachidonoylglycerol (2-AG), and their synthetic and metabolic machinery. The use of cannabis has been described in classical and recent literature for the treatment of pain, but the potential for psychotropic effects as a result of the activation of central CB(1) receptors places a limitation upon its use. There are, however, a number of modern approaches being undertaken to circumvent this problem, and this review represents a concise summary of these approaches, with a particular emphasis upon CB(2) receptor agonists. Selective CB(2) agonists and peripherally restricted CB(1) or CB(1)/CB(2) dual agonists are being developed for the treatment of inflammatory and neuropathic pain, as they demonstrate efficacy in a range of pain models. CB(2) receptors were originally described as being restricted to cells of immune origin, but there is evidence for their expression in human primary sensory neurons, and increased levels of CB(2) receptors reported in human peripheral nerves have been seen after injury, particularly in painful neuromas. CB(2) receptor agonists produce antinociceptive effects in models of inflammatory and nociceptive pain, and in some cases these effects involve activation of the opioid system. In addition, CB receptor agonists enhance the effect of mu-opioid receptor agonists in a variety of models of analgesia, and combinations of cannabinoids and opioids may produce synergistic effects. Antinociceptive effects of compounds blocking the metabolism of anandamide have been reported, particularly in models of inflammatory pain. There is also evidence that such compounds increase the analgesic effect of non-steroidal anti-inflammatory drugs (NSAIDs), raising the possibility that a combination of suitable agents could, by reducing the NSAID dose needed, provide an efficacious treatment strategy, while minimizing the potential for NSAID-induced gastrointestinal and cardiovascular disturbances. Other potential “partners” for endocannabinoid modulatory agents include alpha(2)-adrenoceptor modulators, peroxisome proliferator-activated receptor alpha agonists and TRPV1 antagonists. An extension of the polypharmacological approach is to combine the desired pharmacological properties of the treatment within a single molecule. Hopefully, these approaches will yield novel analgesics that do not produce the psychotropic effects that limit the medicinal use of cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/19150370

CB2 cannabinoid receptor agonists: pain relief without psychoactive effects?

Abstract

“Cannabinoid receptor agonists significantly diminish pain responses in animal models; however, they exhibit only modest analgesic effects in humans. The relative lack of efficacy in man may be because of the dose limitations imposed by psychoactive side effects. Cannabinoid agonists that selectively target CB(2) (peripheral) cannabinoid receptors should be free of psychoactive effects, perhaps allowing for more effective dosing. CB(2) receptor activation inhibits acute, inflammatory and neuropathic pain responses in animal models. In preclinical studies, CB(2) receptor agonists do not produce central nervous system effects. Therefore, they show promise for the treatment of acute and chronic pain without psychoactive effects.”

http://www.ncbi.nlm.nih.gov/pubmed/12550743