A Novel, Tumor-Induced Osteoclastogenesis Pathway Insensitive to Denosumab but Interfered by Cannabidiol.

ijms-logo“Bone metabolism is strictly regulated, and impaired regulation caused by hormonal imbalances induces systemic bone loss. Local bone loss caused by tumor invasion into bone is suggested to be induced by the generation of cytokines, which affect bone metabolism, by tumor cells.

The major cause of systemic and local bone losses is excess bone resorption by osteoclasts, which differentiate from macrophages by receptor activator of nuclear factor kappa-B ligand (RANKL) or tumor necrosis factor-alpha (TNF-α).

We previously found a novel pathway for tumor-induced osteoclastogenesis targeting osteoclast precursor cells (OPCs). Tumor-induced osteoclastogenesis was resistant to RANKL and TNF-α inhibitors. In the present study, we confirmed that exosomes derived from oral squamous cell carcinoma (OSCC) cells induced osteoclasts from OPCs.

We also showed that the depletion of exosomes from culture supernatants of OSCC cells partially interfered with osteoclastogenesis, and cannabidiol, an innoxious cannabinoid without psychotropic effects, almost completely suppressed tumor-induced osteoclastogenesis.

Osteoclastogenesis and its interference by cannabidiol were independent of the expression of nuclear factor of T cell c1 (NFATc1). These results show that osteoclastogenesis induced by OSCC cells targeting OPCs is a novel osteoclastogenic pathway independent of NFATc1 expression that is partially caused by tumor-derived exosomes and suppressed by cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/31835378

https://www.mdpi.com/1422-0067/20/24/6211

Cannabinoids and the expanded endocannabinoid system in neurological disorders.

 Related image“Anecdotal evidence that cannabis preparations have medical benefits together with the discovery of the psychotropic plant cannabinoid Δ9-tetrahydrocannabinol (THC) initiated efforts to develop cannabinoid-based therapeutics.

These efforts have been marked by disappointment, especially in relation to the unwanted central effects that result from activation of cannabinoid receptor 1 (CB1), which have limited the therapeutic use of drugs that activate or inactivate this receptor.

The discovery of CB2 and of endogenous cannabinoid receptor ligands (endocannabinoids) raised new possibilities for safe targeting of this endocannabinoid system. However, clinical success has been limited, complicated by the discovery of an expanded endocannabinoid system – known as the endocannabinoidome – that includes several mediators that are biochemically related to the endocannabinoids, and their receptors and metabolic enzymes.

The approvals of nabiximols, a mixture of THC and the non-psychotropic cannabinoid cannabidiol, for the treatment of spasticity and neuropathic pain in multiple sclerosis, and of purified botanical cannabidiol for the treatment of otherwise untreatable forms of paediatric epilepsy, have brought the therapeutic use of cannabinoids and endocannabinoids in neurological diseases into the limelight.

In this Review, we provide an overview of the endocannabinoid system and the endocannabinoidome before discussing their involvement in and clinical relevance to a variety of neurological disorders, including Parkinson disease, Alzheimer disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, stroke, epilepsy and glioblastoma.”

https://www.ncbi.nlm.nih.gov/pubmed/31831863

“The existence of the endocannabinoidome explains in part why some non-euphoric cannabinoids, which affect several endocannabinoidome proteins, are useful for the treatment of neurological disorders, such as multiple sclerosis and epilepsy.”

https://www.nature.com/articles/s41582-019-0284-z

Structure-Effect Relationships of Novel Semi-Synthetic Cannabinoid Derivatives.

Image result for frontiers in pharmacology“As a library of cannabinoid (CB) derivatives with (-)-transcannabidiol (CBD) or (-)-trans-cannabidivarin (CBDV) scaffold, we synthesized nine novel cannabinoids: 2-hydroxyethyl cannabidiolate (2-HEC), 2-hydroxypentyl cannabidiolate (2-HPC), 2,3-dihydroxypropyl cannabidiolate (GCBD), cyclohexyl cannabidiolate (CHC), n-hexyl-cannabidiolate (HC), 2-(methylsulfonamido)ethyl cannabidiolate (NMSC), 2-hydroxyethyl cannabidivarinolate (2-HECBDV), cyclohexyl cannabidivarinolate (CHCBDV), and n-hexyl cannabidivarinolate (HCBDV). Their binding and intrinsic effects at the CB1- and CB2-receptors and the effects on inflammatory signaling cascades were investigated in in vitro and ex vivo cell models.

Materials and Methods: Binding affinity was studied in membranes isolated from CB-receptor-transfected HEK293EBNA cells, intrinsic functional activity in Chinese hamster ovary (CHO) cells, and activation of nuclear factor κB (NF-κB) and nuclear factor of activated T-cells (NFAT) in phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO)-treated Jurkat T-cells. Inhibition of interleukin (IL)-17-induced pro-inflammatory cytokines and chemokines [IL-6, IL-1β, CC-chemokine ligand 2 (CCL2), and tumor necrosis factor (TNF)-α] was studied in RAW264.7 macrophages at the RNA level. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8, and TNF-α) expression and prostaglandin E2 (PGE2) expression were investigated at the protein level in lipopolysaccharide (LPS)-treated primary human monocytes.

Results: Derivatives with long aliphatic side chains at the ester position at R1 [HC (5)] as well as the ones with polar side chains [2-HECBDV (7), NMSC (6), and 2-HEC (1)] can be selective for CB2-receptors. The CBDV-derivatives HCBDV and CHCBDV demonstrated specific binding at CB1- and CB2-receptors at nanomolar concentrations. 2-HEC, 2-HPC, GCBD, and NMSC were agonists at CB2-receptor and antagonists at CB1-receptor. CHC bound both receptors at submicromolar ranges and was an agonist for these receptors. 2-HECBDV was an agonist at CB2-receptor and an antagonist at the CB1-receptor despite its modest affinity at this receptor (micromolar range). NMSC inhibited NF-κB and NFAT activity, and 2-HEC, 2-HPC, and GCBD dose-dependently inhibited PMA/IO-stimulated NFAT activation. CHC and HC dose-dependently reduced IL-1β and CCL2 messenger RNA (mRNA) expression. NMSC inhibited IL-1β, CCL2, and TNF-α at lower doses. At higher doses, it induced a pronounced increase in IL-6 mRNA. 2-HEC, 2-HPC, and GCBD dose-dependently inhibited LPS-induced IL-1β, TNF-α, and IL-6 synthesis. NMSC further increased LPS-stimulated IL-1β release but inhibited IL-8, TNF-α, and PGE2.

Conclusion: The CBD- and CBDV-derivatives studied are suitable for targeting CB-receptors. Some may be used as selective CB2 agonists. The length of the aliphatic rest at R2 of CBD (pentyl) and CBDV (propyl) did not correlate with the binding affinity. Higher polarity at R1 appeared to favor the agonistic activity at CB2-receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/31824305

https://www.frontiersin.org/articles/10.3389/fphar.2019.01284/full

Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats.

 Image result for Mol Neurobiol.“Cannabidiol (CBD), a non-psychotropic cannabinoid, demonstrates antipsychotic-like and procognitive activities in humans and in animal models of schizophrenia.

The mechanisms of these beneficial effects of CBD are unknown. Here, we examined behavioral effects of CBD in a pharmacological model of schizophrenia-like cognitive deficits induced by repeated ketamine (KET) administration. In parallel, we assessed transcriptional changes behind CBD activities in the prefrontal cortex (PFC), the main brain area linked to schizophrenia-like pathologies.

Male Sprague-Dawley rats were injected for 10 days with KET followed by 6 days of CBD. The cognitive performance was evaluated in the novel object recognition test followed by PFC dissections for next-generation sequencing (RNA-Seq) analysis and bioinformatics.

We observed that KET-induced learning deficits were rescued by CBD (7.5 mg/kg).

Similarly, CBD reversed transcriptional changes induced by KET. The majority of the genes affected by KET and KET-CBD were allocated to astroglial and microglial cells and associated with immune-like processes mediating synaptogenesis and neuronal plasticity. These genes include C1qc, C1qa, C1qb, C2, and C3 complement cascade elements, Irf8 factor and Gpr84, Gpr34, Cx3cr1, P2ry12, and P2ry6 receptors. The main pathway regulators predicted to be involved included TGFβ1 and IFNγ. In addition, CBD itself upregulated oxytocin mRNA in the PFC.

The present data suggest that KET induces cognitive deficits and transcriptional changes in the PFC and that both effects are sensitive to a reversal by CBD treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31823199

https://link.springer.com/article/10.1007%2Fs12035-019-01831-2

Cannabis Use in Children With Pantothenate Kinase-Associated Neurodegeneration.

 SAGE Journals“Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration.

METHODS:

A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration.

RESULTS:

We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1).

CONCLUSION:

Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31823681

https://journals.sagepub.com/doi/abs/10.1177/0883073819890516?journalCode=jcna

Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain.

 

Image result for neuropsychopharmacology“Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable.

Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆9-tetrahydrocannabinol, cannabidiol, or morphine ad libitum.

Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups.

Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine.

This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.”

https://www.ncbi.nlm.nih.gov/pubmed/31812152

https://www.nature.com/articles/s41386-019-0585-3

Oral medicinal cannabinoids to relieve symptom burden in the palliative care of patients with advanced cancer: a double-blind, placebo controlled, randomised clinical trial of efficacy and safety of cannabidiol (CBD).

 

Image result for bmc palliative care“Despite improvements in medical care, patients with advanced cancer still experience substantial symptom distress. There is increasing interest in the use of medicinal cannabinoids, but there is little high quality evidence to guide clinicians. This study aims to define the role of cannabidiol (CBD) in the management of symptom burden in patients with advanced cancer undergoing standard palliative care.

METHODS AND DESIGN:

This study is a multicentre, randomised, placebo controlled, two arm, parallel trial of escalating doses of oral CBD. It will compare efficacy and safety outcomes of a titrated dose of CBD (100 mg/mL formulation, dose range 50 mg to 600 mg per day) against placebo. There is a 2-week patient determined titration phase, using escalating doses of CBD or placebo to reach a dose that achieves symptom relief with tolerable side effects. This is then followed by a further 2-week assessment period on the stable dose determined in collaboration with clinicians.

DISCUSSION:

A major strength of this study is that it will target symptom burden as a whole, rather than just individual symptoms, in an attempt to describe the general improvement in wellbeing previously reported by some patients in open label, non controlled trials of medicinal cannabis. Randomisation with placebo is essential because of the well-documented over reporting of benefit in uncontrolled trials and high placebo response rates in cancer pain trials. This will be the first placebo controlled clinical trial to evaluate rigorously the efficacy, safety and acceptability of CBD for symptom relief in advanced cancer patients. This study will provide the medical community with evidence to present to patients wishing to access medicinal cannabis for their cancer related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/31810437

https://bmcpalliatcare.biomedcentral.com/articles/10.1186/s12904-019-0494-6

CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer.

International Journal of Pharmaceutics“Cannabidiol (CBD) has emerged as a potential agent for breast cancer management.

In this work, the potential use of cannabidiol in solution (CBDsol) and encapsulated in polymeric microparticles when combined with paclitaxel (PTX) and doxorubicin (DOX) in breast cancer treatment has been evaluated for the first time using MCF-7 and MDA-MB-231 cells. CBDsol, previously administered at suboptimal concentrations (cell death <10%), enhanced the PTX and DOX effect in both breast cancer cells.

The co-administration of CBDsol and PTX or DOX showed a synergistic effect. PLGA-502 was selected as the most suitable polymer to develop CBD-loaded microparticles. The developed formulation (CBD-Mps) was effective as monotherapy, showing extended antiproliferative activity for at least 10 days, and when combined with PTX or DOX.

In fact, the use of CBD-Mps allows the combination of both, pre and co-administration strategies, with a single administration, also showing a significant increase in PTX and DOX antiproliferative activity. Finally, the anticancer effect of both CBDsol and CBD-Mps as monotherapy or in combination with PTX was also confirmed in ovo, usingMDA-MB-231-derived tumours.

This data evidences the promising inclusion of CBD in conventional breast cancer chemotherapy and the use of CBD-Mps for the extended release of this cannabinoid, optimising the effect of the chemotherapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/31811927

https://www.sciencedirect.com/science/article/pii/S0378517319309615?via%3Dihub

The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids.

ijms-logo“Epilepsy is a neurological disorder that affects approximately 50 million people worldwide.

There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown.

Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies.

We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment.

There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31810321

https://www.mdpi.com/1422-0067/20/23/6079

Cannabinoids and the Microbiota-Gut-Brain-Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders.

Alcoholism: Clinical and Experimental Research banner“The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD).

In particular, the non-psychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD.

There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain-axis (MGBA).

Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA.

Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control.

Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA.

This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.”

https://www.ncbi.nlm.nih.gov/pubmed/31803950

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14256