Complete biosynthesis of cannabinoids and their unnatural analogues in yeast

Image result for nature journal

“Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.”

https://www.nature.com/articles/s41586-019-0978-9

“Yeast can produce THC, CBD, novel cannabinoids”  https://www.upi.com/Science_News/2019/02/28/Yeast-can-produce-THC-CBD-novel-cannabinoids/4411551303863/

“Yeast produce low-cost, high-quality cannabinoids”  https://www.eurekalert.org/pub_releases/2019-02/uoc–ypl022419.php

“Engineered yeast can brew up the active ingredients in cannabis plants”  https://www.newscientist.com/article/2195103-engineered-yeast-can-brew-up-the-active-ingredients-in-cannabis-plants/

“High grade cannabis chemicals produced using brewing yeast”  https://www.independent.co.uk/news/science/cannabis-drug-produced-yeast-marijuana-thc-cbd-medicine-california-a8799576.html

Lung alveolar tissue destruction and protein citrullination in diesel exhaust exposed mouse lungs.

Basic & Clinical Pharmacology & Toxicology banner

“Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body.

Post-translational modification of proteins, e.g. citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress.

In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested.

The protective effect of phytocannabinoids was investigated as well.

Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice.

Pretreatment with vaporized cannabidiol ameliorated some damaging effects.

Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.”

https://www.ncbi.nlm.nih.gov/pubmed/30801928

https://onlinelibrary.wiley.com/doi/abs/10.1111/bcpt.13213

Intractable Generalized Epilepsy: Therapeutic Approaches.

 

“PURPOSE OF REVIEW:

To summarize recent developments in therapeutic options, both medical and surgical, for patients with drug-resistant generalized epilepsy syndromes, which continue to be a multifaceted challenge for patients and physicians.

RECENT FINDINGS:

Newer generation pharmaceutical options are now available, such as brivaracetam, rufinamide, lacosamide, perampanel, and cannabidiol. Less restrictive dietary options appear to be nearly as effective as classic ketogenic diet for amelioration of seizures. The latest implantable devices include responsive neurostimulation and deep brain stimulation. Corpus callosotomy is an effective treatment for some seizure types, and newer and less invasive approaches are being explored. Resective surgical options have demonstrated success in carefully selected patients despite generalized electrographic findings on electroencephalogram. The current literature reflects a widening range of clinical experience with newer anticonvulsant medications including cannabinoids, dietary therapies, surgical approaches, and neurostimulation devices for patients with intractable generalized epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/30806817

https://link.springer.com/article/10.1007%2Fs11910-019-0933-z

Cannabis Oil Use by Adolescents and Young Adults With Inflammatory Bowel Disease.

Image result for j pediatr gastroenterol nutr

“The aim of the study was to describe use of oral or sublingual cannabis oil (CO) by adolescent and young adult patients with inflammatory bowel disease (IBD).

METHODS:

A descriptive study of IBD patients 13 to 23 years of age seen between January 2015 through December 2017 at Children’s Hospital Colorado. Information obtained included chart abstraction, electronic and interview self-report, and serum cannabinoid levels. We compared CO users and cannabis non-users for clinical characteristics and perceptions of risk. Users of CO provided information on routes, patterns, motivations, and perceived benefits and problems with use.

RESULTS:

The 15 users and 67 non-users were similar for clinical characteristics and pain and appetite scores. 9 of 15 (60%) CO users had used in the past 30 days, an average of 22 ± 9 times; and 4 used daily. A variety of strengths and CBD:THC ratios were reported. Most common perceived effect of use was on sleep quality, nausea, and increase in appetite. Of the 15 users, 6 used only CO and no additional forms of cannabis. Of these 6 CO only users, 5 reported a medical reason for use, most commonly to relieve pain.

CONCLUSIONS:

Adolescent and young adults with IBD used oral CO and many used other cannabis products as well. Users perceived some medical benefit. Care teams should strive for open communication about use until further information on safety and efficacy becomes available.”

https://www.ncbi.nlm.nih.gov/pubmed/30801394

Palmitoylethanolamide and Cannabidiol Prevent Inflammation-induced Hyperpermeability of the Human Gut In Vitro and In Vivo—A Randomized, Placebo-controlled, Double-blind Controlled Trial

Inflammatory Bowel Diseases

“We aimed to examine, for the first time, the effect of cannabidiol (CBD) and palmitoylethanolamide (PEA) on the permeability of the human gastrointestinal tract in vitro, ex vivo, and in vivo.

Results
In vitro, PEA, and CBD decreased the inflammation-induced flux of dextrans (P< 0.0001), sensitive to PPARα and CB1 antagonism, respectively. Both PEA and CBD were prevented by PKA, MEK/ERK, and adenylyl cyclase inhibition (P < 0.001). In human mucosa, inflammation decreased claudin-5 mRNA, which was prevented by CBD (P < 0.05). Palmitoylethanolamide and cannabidiol prevented an inflammation-induced fall in TRPV1 and increase in PPARα transcription (P< 0.0001). In vivo, aspirin caused an increase in the absorption of lactulose and mannitol, which were reduced by PEA or CBD (P < 0.001).

Conclusion

Cannabidiol and palmitoylethanolamide reduce permeability in the human colon. These findings have implications in disorders associated with increased gut permeability, such as inflammatory bowel disease.”

https://academic.oup.com/ibdjournal/advance-article-abstract/doi/10.1093/ibd/izz017/5341970?redirectedFrom=fulltext

DMH-cannabidiol, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity by activating A2A receptor and inhibiting p38.

Toxicology and Applied Pharmacology

“Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2Aantagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduced the NF-kB activity at concentrations intimately associated with the reduction in cell viability, DMH-CBD reduce the NF-kB activity and by activating A2A receptors and inhibits p38 phosphorylation.”

https://www.ncbi.nlm.nih.gov/pubmed/30796934

https://www.sciencedirect.com/science/article/pii/S0041008X19300663?via%3Dihub

Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and γ-irradiation in human glioblastoma cells.

Related image“Despite advances in glioblastoma (GBM) therapy, prognosis of the disease remains poor with a low survival rate.

Cannabidiol (CBD) can induce cell death and enhance radiosensitivity of GBM but not normal astrocytes.

Inhibition of ATM kinase is an alternative mechanism for radiosensitization of cancer cells.

In this study, we increased the cytotoxic effects of the combination of CBD and γ-irradiation in GBM cells through additional inhibition of ATM kinase with KU60019, a small molecule inhibitor of ATM kinase.

We observed in GBM cells treated by CBD, γ-irradiation and KU60019 high levels of apoptosis together with strong upregulation of the percentage of G2/M-arrested cells, blockade of cell proliferation and a massive production of pro-inflammatory cytokines.

Overall, these changes caused both apoptotic and non-apoptotic inflammation-linked cell death. Furthermore, via JNK-AP1 activation in concert with active NF-κB, CBD upregulated gene and protein expression of DR5/TRAIL-R2 and sensitize GBM cells to TRAIL-induced apoptosis. In contrast, CBD notably decreased in GBM surface levels of PD-L1, a critical immune checkpoint agent for T-lymphocytes. We also used in the present study TS543 human proneural glioma cells that were grown as spheroid culture. TS543 neurospheres exhibited dramatic sensitivity to CBD-mediated killing that was additionally increased in combination with γ-irradiation and KU60019.

In conclusion, treatment of human GBM by the triple combination (CBD, γ-irradiation and KU60019) could significantly increase cell death levels in vitro and potentially improve the therapeutic ratio of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30783513

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26582&path[]=82682

Cannabinoids: a new approach for pain control?

Image result for ovid journal

“To analyze available data related to the use of cannabinoids in medicine, with a special focus on pain management in cancer. The use of cannabis for medical purposes is growing but there are still numerous questions to be solved: effectiveness, safety, and specific indications.

RECENT FINDINGS:

There is considerable variation between countries in the approaches taken, reflecting a variety of historical and cultural factors and despite few randomized controlled studies using natural cannabinoids, there is a trend to state that the use of cannabis should be taken seriously as a potential treatment of cancer-related pain. Cannabidiol, a nontoxic phytocannabinoid with few side-effects is promising in various indications in medicine.

SUMMARY:

The endocannabinoid system is a potential therapeutic target. Cannabinoids may be considered as potential adjuvant in cancer-related pain management. Cannabidiol appears to be the drug of choice. Analgesic trial designs should evolve to get closer to real-life practice and to avoid biases.”

https://www.ncbi.nlm.nih.gov/pubmed/30789867

https://insights.ovid.com/crossref?an=00001622-900000000-00002

miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids.

Image result for plos one

“Mammalian microRNAs (miRNAs) play a critical role in modulating the response of immune cells to stimuli.

Cannabinoids are known to exert beneficial actions such as neuroprotection and immunosuppressive activities. However, the underlying mechanisms which contribute to these effects are not fully understood.

We previously reported that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signaling pathways.

Using lipopolysaccharide (LPS) to stimulate BV-2 microglial cells, we examined the role of cannabinoids on the expression of miRNAs. Expression was analyzed by performing deep sequencing, followed by Ingenuity Pathway Analysis to describe networks and intracellular pathways.

miRNA sequencing analysis revealed that 31 miRNAs were differentially modulated by LPS and by cannabinoids treatments. In addition, we found that at the concentration tested, CBD has a greater effect than THC on the expression of most of the studied miRNAs.

The results clearly link the effects of both LPS and cannabinoids to inflammatory signaling pathways. LPS upregulated the expression of pro-inflammatory miRNAs associated to Toll-like receptor (TLR) and NF-κB signaling, including miR-21, miR-146a and miR-155, whereas CBD inhibited LPS-stimulated expression of miR-146a and miR-155. In addition, CBD upregulated miR-34a, known to be involved in several pathways including Rb/E2f cell cycle and Notch-Dll1 signaling.

Our results show that both CBD and THC reduced the LPS-upregulated Notch ligand Dll1 expression. MiR-155 and miR-34a are considered to be redox sensitive miRNAs, which regulate Nrf2-driven gene expression. Accordingly, we found that Nrf2-mediated expression of redox-dependent genes defines a Mox-like phenotype in CBD treated BV-2 cells.

In summary, we have identified a specific repertoire of miRNAs that are regulated by cannabinoids, in resting (surveillant) and in LPS-activated microglia. The modulated miRNAs and their target genes are controlled by TLR, Nrf2 and Notch cross-talk signaling and are involved in immune response, cell cycle regulation as well as cellular stress and redox homeostasis.”

Cannabidiol in patients with Lennox-Gastaut syndrome: Interim analysis of an open-label extension study.

Epilepsia banner

“Patients with Lennox-Gastaut syndrome (LGS) who completed 1 of 2 randomized, double-blind, placebo-controlled trials of add-on cannabidiol (CBD) (GWPCARE3, NCT02224560 or GWPCARE4, NCT02224690) were invited to enroll in an open-label extension (OLE) study evaluating the long-term safety and efficacy of CBD (GWPCARE5, NCT02224573). Herein we present an interim analysis of the safety, efficacy, and patient-reported outcomes from this trial.

METHODS:

Patients received a pharmaceutical formulation of highly purified CBD oral solution (Epidiolex; 100 mg/mL), titrated from 2.5 to 20 mg/kg/d over a 2-week titration period, in addition to their existing medications. Doses could be reduced if not tolerated or increased up to 30 mg/kg/d if thought to be of benefit.

RESULTS:

This interim analysis was based on a November 2016 data cut. Of 368 patients who completed treatment in GWPCARE3 and GWPCARE4, 366 (99.5%) enrolled in the OLE study (GWPCARE5). Median treatment duration was 38 weeks at a mean modal dose of 23 mg/kg/d. Most patients (92.1%) experienced adverse events (AEs), primarily of mild (32.5%) or moderate (43.4%) severity. The most common AEs were diarrhea (26.8%), somnolence (23.5%), and convulsion (21.3%). Thirty-five patients (9.6%) discontinued treatment due to AEs. Liver transaminase elevations were reported in 37 patients (10.1%), of whom 29 were receiving concomitant valproic acid; 34 cases resolved spontaneously or with dose modification of CBD or concomitant medication. Median reduction from baseline in drop seizure frequency (quantified monthly over 12-week periods) ranged from 48% to 60% through week 48. Median reduction in monthly total seizure frequency ranged from 48% to 57% across all 12-week periods through week 48. Eighty-eight percent of patients/caregivers reported an improvement in the patient’s overall condition per the Subject/Caregiver Global Impression of Change scale.

SIGNIFICANCE:

In this study, long-term add-on CBD treatment had an acceptable safety profile in patients with LGS and led to sustained reductions in seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/30740695

https://onlinelibrary.wiley.com/doi/full/10.1111/epi.14670