Emerging drugs for the treatment of Dravet syndrome.

Publication Cover

“Dravet syndrome (DS) is an early-onset genetic developmental epileptic encephalopathy characterized by multiple seizure types which are refractory to antiseizure medication. There is an unmet need for effective and tolerable drugs to control different seizure types in DS types, with the aim of improving quality of life and preventing neurological impairment.

Areas covered: Narrative review of efficacy and tolerability of fenfluramine, cannabidiol (CBD), verapamil and modulators of serotonin signaling pathways (lorcaserin or trazodone) in the treatment of DS.

Expert Opinion/Commentary: A recent large randomized controlled-trial has shown that CBD is effective in the treatment of DS; preliminary data from the placebo-controlled trial on fenfluramine are also promising. Further studies are definitely required to evaluate the role of verapamil and modulators of serotonin signaling in DS. At present, drugs used to treat seizures in DS treat the symptoms of epilepsy rather than its cause(s). Future research should focus on elucidating the natural history of DS and whether appropriate treatment can have a beneficial impact on its disease course. A multidisciplinary, individualized approach to care of DS patients is required.”

https://www.ncbi.nlm.nih.gov/pubmed/30482063

https://www.tandfonline.com/doi/abs/10.1080/14728214.2018.1552937?journalCode=iemd20

Reefer madness or real medicine? A plea for incorporating medicinal cannabis in pharmacy curricula.

Currents in Pharmacy Teaching and Learning

“Over the past twenty years, the acceptance and use of medicinal cannabis has increased in the United States. However, there is still a lack of education and comfort as it relates to the therapeutic uses of botanical cannabis and cannabidiol in pharmacy professional curricula. Professional training programs have failed to keep pace with the evolving national landscape and growing acceptance of this therapy.

PERSPECTIVE:

In this manuscript, the current landscape of pharmacy professional involvement in the dispensing and administration of medicinal cannabis throughout the United States is described. A concern exists that there is a knowledge gap among pharmacists and pharmacy students, as demonstrated by recent survey results, related to the pharmacology, dosing, administration, adverse effects, drug interactions, and monitoring of both medicinal and recreational cannabis use.

IMPLICATIONS:

While cannabis use is still considered illegal by the federal government, it is imperative pharmacy educators prepare the next generation of pharmacists to be knowledgeable on the safe and effective use and communication tactics related to cannabis. As a therapy garnering national attention with growing support for use, education on this topic must be included in pharmacy curricula and pharmacy continuing education.”

https://www.ncbi.nlm.nih.gov/pubmed/30497617

https://www.sciencedirect.com/science/article/abs/pii/S1877129717304860?via%3Dihub

Peripubertal cannabidiol treatment rescued behavioral and neurochemical abnormalities in MAM model of schizophrenia.

 Neuropharmacology

“In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression which might be due to a reduction in DNA methylation at gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.”

https://www.ncbi.nlm.nih.gov/pubmed/30496751

https://www.sciencedirect.com/science/article/pii/S0028390818308761?via%3Dihub

Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain

Image result for wolters kluwer

“Clinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis that interacts with the serotonin (5-HT)1A receptor, may possess analgesic and anxiolytic effects.

Overall, repeated treatment with low-dose CBD induces analgesia predominantly through TRPV1 activation, reduces anxiety through 5-HT1A receptor activation, and rescues impaired 5-HT neurotransmission under neuropathic pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30157131

https://insights.ovid.com/crossref?an=00006396-900000000-98870

Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma.

European Journal of Pharmacology

“Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling.

Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and -2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren’t fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario.

Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated.

CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1levels and lung function in asthmatic patients.

CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.”

https://www.ncbi.nlm.nih.gov/pubmed/30481497

https://www.sciencedirect.com/science/article/pii/S0014299918306836?via%3Dihub

Novel inverse agonists for the orphan G protein-coupled receptor 6.

Image result for Heliyon.

“The orphan G protein-coupled receptor 6 (GPR6) displays unique promise as a therapeutic target for the treatment of neuropsychiatric disorders due to its high expression in the striatopallidal neurons of the basal ganglia.

GPR6, along with closely related orphan receptors GPR3 and GPR12, are phylogenetically related to CB1 and CB2 cannabinoid receptors.

In the current study, we performed concentration-response studies on the effects of three different classes of cannabinoids: endogenous, phyto-, and synthetic, on both GPR6-mediated cAMP accumulation and β-arrestin2 recruitment. In addition, structure-activity relationship studies were conducted on cannabidiol (CBD), a recently discovered inverse agonist for GPR6.

We have identified four additional cannabinoids, cannabidavarin (CBDV), WIN55212-2, SR141716A and SR144528, that exert inverse agonism on GPR6. Furthermore, we have discovered that these cannabinoids exhibit functional selectivity toward the β-arrestin2 recruitment pathway.

These novel, functionally selective inverse agonists for GPR6 can be used as research tools and potentially developed into therapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/30480157

Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: in vitro screening of critical parameters.

 European Journal of Pharmaceutics and Biopharmaceutics“The therapeutic potential of cannabinoids has been truly constrained heretofore due to their strong psychoactive effects and their high lipophilicity. In this context, precisely due to the lack of psychoactive properties, cannabidiol (CBD), the second major component of Cannabis sativa, arises as the phytocannabinoid with the most auspicious therapeutic potential.

Hence, the incorporation of CBD in lipid nanocapsules (LNCs) will contribute to overcome the dosing problems associated with cannabinoids.

Herein, we have prepared LNCs decorated and loaded with CBD for glioma therapy and screened in vitro their critical parameters. On the one hand, we have encapsulated CBD into the oily core of LNCs to test their in vitro efficacy as extended-release carriers against the human glioblastoma cell line U373MG. The in vitro antitumor effect was highly dependent on the size of LNCs due to its pivotal role in the extent of CBD release.

Effectively, a comparison between two differently-sized LNCs (namely, 20-nm and 50-nm sized carriers) showed that the smaller LNCs reduced by 3.0-fold the IC50 value of their 50-nm sized counterparts. On the other hand, to explore the potential of this phytocannabinoid to target any of the cannabinoid receptors overexpressed in glioma cells, we decorated the LNCs with CBD. This functionalization strategy enhanced the in vitro glioma targeting by 3.4-fold in comparison with their equally-sized undecorated counterparts.

Lastly, the combination of CBD-loading with CBD-functionalization further reduced the IC50 values. Hence, the potential of these two strategies of CBD incorporation into LNCs deserves subsequent in vivo evaluation.”

https://www.ncbi.nlm.nih.gov/pubmed/30472144

https://www.sciencedirect.com/science/article/abs/pii/S0939641118311366?via%3Dihub

Impact of recreational and medicinal marijuana on surgical patients: A review.

American Journal of Surgery Home

“As medicinal and recreational marijuana use broadens across the United States, knowledge of its effects on the body will become increasingly important to all health care providers, including surgeons.

DATA SOURCES:

We performed a literature review of Pubmed for articles discussing the basic science related to cannabinoids, as well as articles regarding cannabinoid medications, and cannabis use in surgical patients.

CONCLUSIONS:

The primary components in the cannabis plant, tetrahydrocannabinol (THC) and cannabidiol (CBD), have been made available in numerous forms and formulations to treat multiple medical conditions, and recreational access to marijuana is increasing. Of particular importance to the surgeon may be their effects on prolonging intestinal motility, decreasing inflammation, increasing hunger, mitigating pain, and reducing nausea and vomiting. Perioperative use of medicinal or recreational marijuana will become increasingly prevalent, and the surgeon should be aware of the positive and negative effects of these cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/30471810

https://www.americanjournalofsurgery.com/article/S0002-9610(18)31123-1/fulltext

Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns.

Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy.

This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection.

RESULTS:

HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated.

CONCLUSIONS:

cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.”

https://www.ncbi.nlm.nih.gov/pubmed/30468796

https://www.sciencedirect.com/science/article/pii/S0028390818308554?via%3Dihub

Long-Term Safety, Tolerability, and Efficacy of Cannabidiol in Children with Refractory Epilepsy: Results from an Expanded Access Program in the US.

“Purified cannabidiol is a new antiepileptic drug that has recently been approved for use in patients with Lennox-Gastaut and Dravet syndromes, but most published studies have not extended beyond 12-16 weeks.

The objective of this study was to evaluate the long-term safety, tolerability, and efficacy of cannabidiol in children with epilepsy.

 

Twenty-six children were enrolled. Most had genetic epilepsies with daily or weekly seizures and multiple seizure types. All were refractory to prior antiepileptic drugs (range 4-11, mean 7), and were taking two antiepileptic drugs on average. Duration of therapy ranged from 4 to 53 months (mean 21 months). Adverse events were reported in 21 patients (80.8%), including reduced appetite in ten (38.4%), diarrhea in nine (34.6%), and weight loss in eight (30.7%). Four (15.4%) had changes in antiepileptic drug concentrations and three had elevated aspartate aminotransferase and alanine aminotransferase levels when cannabidiol was administered together with valproate. Serious adverse events, reported in six patients (23.1%), included status epilepticus in three, catatonia in two, and hypoalbuminemia in one. Fifteen patients (57.7%) discontinued cannabidiol for lack of efficacy, one because of status epilepticus, and one for severe weight loss. The retention rate declined rapidly in the first 6 months and more gradually thereafter. At 24 months, the number of patients continuing cannabidiol as adjunctive therapy was nine of the original 26 (34.6%). Of these patients, seven (26.9%) had a sustained > 50% reduction in motor seizures, including three (11.5%) who remain seizure free.

CONCLUSION:

Over a 4-year period, cannabidiol was effective in 26.9% of children with otherwise refractory epilepsy. It was well tolerated in about 20% of patients, but 80.8% had adverse events, including 23.1% with serious adverse events. Decreased appetite and diarrhea were frequent along with weight loss that became evident only later in the treatment.”