Epilepsy and Cannabis: A Literature Review.

 

Image result for cureus journal

“Epilepsy is considered to be one of the most common non-communicable neurological diseases especially in low to middle-income countries. Approximately one-third of patients with epilepsy have seizures that are resistant to antiepileptic medications. Clinical trials for the treatment of medically refractory epilepsy have mostly focused on new drug treatments, and result in a significant portion of subjects whose seizures remain refractory to medication.

The off-label use of cannabis sativa plant in treating seizures is known since ancient times. The active ingredients of this plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the latter considered safer and more effective in treating seizures, and with less adverse psychotropic effects.

Clinical trials prior to two years ago have shown little to no significant effects of cannabis in reducing seizures. These trials seem to be underpowered, with a sample size less than 15. In contrast, more recent studies that have included over 100 participants showed that CBD use resulted in a significant reduction in seizure frequency.

Adverse effects of CBD overall appear to be benign, while more concerning adverse effects (e.g., elevated liver enzymes) improve with continued CBD use or dose reduction. In most of the trials, CBD is used in adjunct with epilepsy medication, therefore it remains to be determined whether CBD is itself antiepileptic or a potentiator of traditional antiepileptic medications. Future trials may evaluate the efficacy of CBD in treating seizures due to specific etiologies (e.g., post-traumatic, post-stroke, idiopathic).”

https://www.ncbi.nlm.nih.gov/pubmed/30443449

https://www.cureus.com/articles/14699-epilepsy-and-cannabis-a-literature-review

Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats.

“Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH).

Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes.

We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH.

The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH.

These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.”

https://www.ncbi.nlm.nih.gov/pubmed/30430393

https://link.springer.com/article/10.1007%2Fs12640-018-9972-5

Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD.

We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor-α in a manner reversed by CB2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5′-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

https://www.ncbi.nlm.nih.gov/pubmed/29632236

http://jpet.aspetjournals.org/content/365/3/652.long

Efficacy of cannabinoids in paediatric epilepsy.

Developmental Medicine & Child Neurology banner

“There are hundreds of compounds found in the marijuana plant, each contributing differently to the antiepileptic and psychiatric effects. Cannabidiol (CBD) has the most evidence of antiepileptic efficacy and does not have the psychoactive effects of ∆9 -tetrahydrocannabinol. CBD does not act via cannabinoid receptors and its antiepileptic mechanism of action is unknown. Despite considerable community interest in the use of CBD for paediatric epilepsy, there has been little evidence for its use apart from anecdotal reports, until the last year. Three randomized, placebo-controlled, double-blind trials in Dravet syndrome and Lennox-Gastaut syndrome found that CBD produced a 38% to 41% median reduction in all seizures compared to 13% to 19% on placebo. Similarly, CBD resulted in a 39% to 46% responder rate (50% convulsive or drop-seizure reduction) compared to 14% to 27% on placebo. CBD was well tolerated; however, sedation, diarrhoea, and decreased appetite were frequent. CBD shows similar efficacy to established antiepileptic drugs. WHAT THIS PAPER ADDS: Cannabidiol (CBD) shows similar efficacy in the severe paediatric epilepsies to other antiepileptic drugs. Careful down-titration of benzodiazepines is essential to minimize sedation with adjunctive CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30402932

https://onlinelibrary.wiley.com/doi/full/10.1111/dmcn.14087

Efficacy and Safety of Cannabidiol in Epilepsy: A Systematic Review and Meta-Analysis.

 Image result for drugs journal“Approximately one-third of patients with epilepsy presents seizures despite adequate treatment. Hence, there is the need to search for new therapeutic options. Cannabidiol (CBD) is a major chemical component of the resin of Cannabis sativa plant, most commonly known as marijuana. The anti-seizure properties of CBD do not relate to the direct action on cannabinoid receptors, but are mediated by a multitude of mechanisms that include the agonist and antagonist effects on ionic channels, neurotransmitter transporters, and multiple 7-transmembrane receptors. In contrast to tetra-hydrocannabinol, CBD lacks psychoactive properties, does not produce euphoric or intrusive side effects, and is largely devoid of abuse liability.

OBJECTIVE:

The aim of the study was to estimate the efficacy and safety of CBD as adjunctive treatment in patients with epilepsy using meta-analytical techniques.

METHODS:

Randomized, placebo-controlled, single- or double-blinded add-on trials of oral CBD in patients with uncontrolled epilepsy were identified. Main outcomes included the percentage change and the proportion of patients with ≥ 50% reduction in monthly seizure frequency during the treatment period and the incidence of treatment withdrawal and adverse events (AEs).

RESULTS:

Four trials involving 550 patients with Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) were included. The pooled average difference in change in seizure frequency during the treatment period resulted 19.5 [95% confidence interval (CI) 8.1-31.0; p = 0.001] percentage points between the CBD 10 mg and placebo groups and 19.9 (95% CI 11.8-28.1; p < 0.001) percentage points between the CBD 20 mg and placebo arms, in favor of CBD. The reduction in all-types seizure frequency by at least 50% occurred in 37.2% of the patients in the CBD 20 mg group and 21.2% of the placebo-treated participants [risk ratio (RR) 1.76, 95% CI 1.07-2.88; p = 0.025]. Across the trials, drug withdrawal for any reason occurred in 11.1% and 2.6% of participants receiving CBD and placebo, respectively (RR 3.54, 95% CI 1.55-8.12; p = 0.003) [Chi squared = 2.53, degrees of freedom (df) = 3, p = 0.506; I2 = 0.0%]. The RRs to discontinue treatment were 1.45 (95% CI 0.28-7.41; p = 0.657) and 4.20 (95% CI 1.82-9.68; p = 0.001) for CBD at the doses of 10 and 20 mg/kg/day, respectively, in comparison to placebo. Treatment was discontinued due to AEs in 8.9% and 1.8% of patients in the active and control arms, respectively (RR 5.59, 95% CI 1.87-16.73; p = 0.002). The corresponding RRs for CBD at the doses of 10 and 20 mg/kg/day were 1.66 (95% CI 0.22-12.86; p = 0.626) and 6.89 (95% CI 2.28-20.80; p = 0.001). AEs occurred in 87.9% and 72.2% of patients treated with CBD and placebo (RR 1.22, 95% CI 1.11-1.33; p < 0.001). AEs significantly associated with CBD were somnolence, decreased appetite, diarrhea, and increased serum aminotransferases.

CONCLUSIONS:

Adjunctive CBD in patients with LGS or DS experiencing seizures uncontrolled by concomitant anti-epileptic treatment regimens is associated with a greater reduction in seizure frequency and a higher rate of AEs than placebo.”

https://www.ncbi.nlm.nih.gov/pubmed/30390221

Brief Report: Cannabidiol-Rich Cannabis in Children with Autism Spectrum Disorder and Severe Behavioral Problems-A Retrospective Feasibility Study.

“Anecdotal evidence of successful cannabis treatment in autism spectrum disorder (ASD) are accumulating but clinical studies are lacking. This retrospective study assessed tolerability and efficacy of cannabidiol-rich cannabis, in 60 children with ASD and severe behavioral problems (age = 11.8 ± 3.5, range 5.0-17.5; 77% low functioning; 83% boys). Efficacy was assessed using the Caregiver Global Impression of Change scale. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%). One girl who used higher tetrahydrocannabinol had a transient serious psychotic event which required treatment with an antipsychotic. Following the cannabis treatment, behavioral outbreaks were much improved or very much improved in 61% of patients. This preliminary study supports feasibility of CBD-based cannabis trials in children with ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30382443

https://link.springer.com/article/10.1007%2Fs10803-018-3808-2

A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Dose, and Food Effect Trial of the Safety, Tolerability and Pharmacokinetics of Highly Purified Cannabidiol in Healthy Subjects.

“A formal single ascending and multiple dose pharmacokinetic (PK) trial of cannabidiol (CBD) oral solution was required to determine the safety and tolerability of CBD, the maximum tolerated dose, and to examine the effect of food on CBD PK parameters.

OBJECTIVE:

This trial assessed the safety, tolerability and PK of CBD oral solution in healthy adult volunteers, as well as the effect of food on CBD PK parameters.

 CONCLUSION:

CBD was generally well tolerated. Most AEs were mild in severity; none were severe or serious. The safety and PK profile support twice-daily administration of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30374683

https://link.springer.com/article/10.1007%2Fs40263-018-0578-5

Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells.

Image result for oncotarget

“Aberrant proliferation and migration of vascular smooth muscle cells (VSMC) have been closely linked to the development and progression of cardiovascular and cancer diseases.

The cytoprotective enzyme heme oxygenase-1 (HO-1) has been shown to mediate anti-proliferative and anti-migratory effects in VSMC. This study investigates the effect of cannabidiol (CBD), a non-psychoactive cannabinoid, on HO-1 expression and disease-associated functions of human umbilical artery smooth muscle cells (HUASMC).

HO-1 protein and mRNA were significantly increased by CBD in a time- and concentration-dependent manner. Although the expression of several cannabinoid-activated receptors (CB1, CB2, G protein-coupled receptor 55, transient receptor potential vanilloid 1) was verified in HUASMC, CBD was shown to induce HO-1 via none of these targets. Instead, the CBD-mediated increase in HO-1 protein was reversed by the glutathione precursor N-acetylcysteine, indicating the participation of reactive oxygen species (ROS) signaling; this was confirmed by flow cytometry-based ROS detection.

CBD-induced HO-1 expression was accompanied by inhibition of growth factor-mediated proliferation and migration of HUASMC. However, neither inhibition of HO-1 activity nor knockdown of HO-1 protein attenuated CBD-mediated anti-proliferative and anti-migratory effects. Indeed, inhibition or depletion of HO-1 resulted in induction of apoptosis and intensified CBD-mediated effects on proliferation and migration.

Collectively, this work provides the first indication of CBD-mediated enhancement of HO-1 in VSMC and potential protective effects against aberrant VSMC proliferation and migration. On the other hand, our data argue against a role of HO-1 in CBD-mediated inhibition of proliferation and migration while substantiating its anti-apoptotic role in oxidative stress-mediated cell fate.”

https://www.ncbi.nlm.nih.gov/pubmed/30349652

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26191&path[]=81658

Combined THC and CBD to treat pain in epidermolysis bullosa: a report of three cases.

British Journal of Dermatology banner

“Epidermolysis bullosa (EB) is a genetic blistering disorder characterized by intense pain related to disease pathology and care-based interventions. Opioid-based therapies underpin pain-care in EB however are unable to provide adequate analgesia in a significant proportion of patients. Cannabinoid-based medicines (CBMs) have been increasingly studied for pain conditions of various etiologies and pose as a novel dimension for pain-care in EB. We present three cases of EB who were prescribed pharmaceutical-grade sublingually administered CBMs comprising tetrahydrocannabinol (THC) and cannabidiol (CBD). All three patients reported improved pain scores, reduced pruritus and reduction in overall analgesic drug intake. ”

https://www.ncbi.nlm.nih.gov/pubmed/30347109

https://onlinelibrary.wiley.com/doi/abs/10.1111/bjd.17341

Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test.

SciELO - Scientific Electronic Library Online

“Cannabidiol (CBD), one of the non-psychotomimetic compounds of Cannabis sativa, causes anxiolytic-like effects in animals, with typical bell-shaped dose-response curves. No study, however, has investigated whether increasing doses of this drug would also cause similar curves in humans.

The objective of this study was to compare the acute effects of different doses of CBD and placebo in healthy volunteers performing a simulated public speaking test (SPST), a well-tested anxiety-inducing method.

Our findings confirm the anxiolytic-like properties of CBD and are consonant with results of animal studies describing bell-shaped dose-response curves. Optimal therapeutic doses of CBD should be rigorously determined so that research findings can be adequately translated into clinical practice.”

https://www.europeanneuropsychopharmacology.com/article/S0924-977X(16)31702-3/abstract

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462018005007102&lng=en&tlng=en