Anticonvulsant and Neuroprotective Effects of Cannabidiol During the Juvenile Period.

Image result for J Neuropathol Exp Neurol. journal

“Anticonvulsant effects of cannabidiol (CBD), a nonpsychoactive cannabinoid, have not been investigated in the juvenile brain. We hypothesized that CBD would attenuate epileptiform activity at an age when the brain first becomes vulnerable to neurotoxicity and social/cognitive impairments.

To induce seizures, kainic acid (KA) was injected either into the hippocampus (KAih) or systemically (KAip) on postnatal (P) day 20. CBD was coadministered (KA + CBDih, KA + CBDip) or injected 30 minutes postseizure onset (KA/CBDih, KA/CBDip).

Hyperactivity, clonic convulsions, and electroencephalogram rhythmic oscillations were attenuated or absent after KA + CBDih and reduced after KA + CBDip. NeuN immunohistochemistry revealed neuroprotection.

Augmented reactive glia number and expression were reversed in CA1 but persisted deep within the dentate hilus. Parvalbumin-positive (PV+) interneurons were reduced in both models, whereas immunolabeling was dramatically increased within ipsilateral and contralateral dendritic/neuropilar fields following KA + CBDih. Cannabinoid receptor 1 (CB1) expression was minimally affected after KAih contrasting elevations observed after KAip.

Intracranial coadministration data suggest that CBD has higher efficacy in epilepsy with hippocampal focus rather than when extrahippocampal amygdala/cortical structures are triggered by systemic treatments. Inhibition of surviving PV+ and CB1+ interneurons may be facilitated by CBD implying a protective role in regulating hippocampal seizures and neurotoxicity at juvenile ages.”

https://www.ncbi.nlm.nih.gov/pubmed/30169677

Potential clinical benefits of CBD-rich Cannabis extracts over purified cannabidiol (CBD) in treatment-resistant epilepsy: observational data meta-analysis

“This meta-analysis paper describes the analysis of observational clinical studies on the treatment of refractory epilepsy with cannabidiol (CBD)-based products. Beyond attempting to establish the safety and efficacy of such products, we also investigated if there is enough evidence to assume any difference in efficacy between CBD-rich extracts compared to purified CBD products.

The systematic search took place in February/2017 and updated in December/2017 using the keywords “epilepsy” or “Dravet” or “Lennox-Gastaut” or “CDKL5” combined with “Cannabis”, “cannabinoid”, “cannabidiol” or “CBD” resulting in 199 papers. The qualitative assessment resulted in 11 valid references, with an average impact factor of 8.1 (ranging from 1.4 to 47.8). The categorical data of a total of 670 patients were analyzed by Fischer test. The average daily dose ranged between 1 and 50 mg/kg, with treatment length from 3 to 12 months (mean 6.2 months).

Two thirds of patients reported improvement in the frequency of convulsive crisis (399/622, 64%). There were more reports of improvement from patients treated with CBD-rich extracts (318/447, 71%) than patients treated with purified CBD (81/223, 36%), with statistical significance (p<0.0001).

Nevertheless, when the standard clinical threshold of a “50% reduction or more in the frequency of convulsive crisis” was applied, only 39% of the individuals were considered “responders”, and there was no difference (p=0.56) between treatments with CBD-rich extracts (97/255, 38%) and purified CBD (94/223, 42%).

Patients treated with CBD-rich extracts reported lower average dose (6.1 mg/kg/day) than those using purified CBD (27.1 mg/kg/day). The reports of mild (109/285 vs 291/346, p<0.0001) and severe (23/285 vs 77/346, p<0.0001) adverse effects were more frequent in products containing purified CBD than in CBD-rich extracts.

CBD-rich extracts seem to present a better therapeutic profile than purified CBD, at least in this population of patients with refractory epilepsy. The roots of this difference is likely due to synergistic effects of CBD with other phytocompounds (aka Entourage effect), but this remains to be confirmed in controlled clinical studies.”

Cannabidiol modulates serotonergic transmission and prevents allodynia and anxiety-like behavior in a model of neuropathic pain.

Image result for ovid journal

“Clinical studies indicate that cannabidiol (CBD), the primary non-addictive component of cannabis that interacts with the serotonin (5-HT) 1A receptor, may possess analgesic and anxiolytic effects. However, its effects on 5-HT neuronal activity, as well as its impact in models of neuropathic pain are unknown.

Seven days of treatment with CBD reduced mechanical allodynia, decreased anxiety-like behavior, and normalized 5-HT activity. Anti-allodynic effects of CBD were fully prevented by capsazepine (10 mg/kg/day, s.c., for 7 days) and partially prevented by WAY 100635 (2 mg/kg/day, s.c., for 7 days), while the anxiolytic effect was blocked only by WAY.

Overall, repeated treatment with low-dose CBD induces analgesia predominantly via TRPV1 activation, reduces anxiety via 5-HT1A receptor activation, and rescues impaired 5-HT neurotransmission under neuropathic pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30157131

https://insights.ovid.com/crossref?an=00006396-900000000-98870

“Cannabis pain relief without the ‘high’. Canadian researchers pinpoint the mechanism of cannabidiol for safe pain relief without side effects”  https://eurekalert.org/pub_releases/2018-10/muhc-cpr102418.php

“Effective dose of cannabidiol for safe pain relief without the typical ‘high'”  https://www.news-medical.net/news/20181025/Effective-dose-of-cannabidiol-for-safe-pain-relief-without-the-typical-high.aspx

Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science.

Related image

“Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described.

Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain.

OBJECTIVE:

Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties.

CONCLUSION:

There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/30152161

Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer.

Image result for frontiers in pharmacology

“Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors.

Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth in vivo.

Cannabidiol (CBD), a phytocannabinoid derived from Cannabis sativa, has anti-inflammatory and anti-oxidant properties, and displays anti-proliferative activity.

Here we report a novel role for CBD as a potent inhibitor of EMV release from three cancer cell lines: prostate cancer (PC3), hepatocellular carcinoma (HEPG2) and breast adenocarcinoma (MDA-MB-231).

CBD significantly reduced exosome release in all three cancer cell lines, and also significantly, albeit more variably, inhibited microvesicle release.

The EMV modulating effects of CBD were found to be dose dependent (1 and 5 μM) and cancer cell type specific. Moreover, we provide evidence that this may be associated with changes in mitochondrial function, including modulation of STAT3 and prohibitin expression, and that CBD can be used to sensitize cancer cells to chemotherapy.

We suggest that the known anti-cancer effects of CBD may partly be due to the regulatory effects on EMV biogenesis, and thus CBD poses as a novel and safe modulator of EMV-mediated pathological events.”

https://www.ncbi.nlm.nih.gov/pubmed/30150937

https://www.frontiersin.org/articles/10.3389/fphar.2018.00889/full

Cannabidiol for Epilepsy: New Hope on the Horizon?

 Clinical Therapeutics Home

“Epilepsy is a common neurologic disorder; it is estimated that ∼50 million people are affected worldwide. About one third of those patients are drug resistant, defined as failure to stop all seizures despite adequate trials of at least 2 appropriate medications. There has been an enormous interest in developing antiepileptic drugs with novel mechanisms of action. This review discusses the evidence supporting the anticonvulsant properties of cannabis in humans, focusing on cannabidiol. We begin by exploring the early and somewhat anecdotal evidence that was recently replaced by high-quality data from randomized controlled studies, which subsequently led to the US Food and Drug Administration approval of a purified cannabidiol extract for the treatment of 2 highly refractory pediatric epilepsy syndromes (Dravet and Lennox-Gastaut).”

https://www.ncbi.nlm.nih.gov/pubmed/30150078

https://www.clinicaltherapeutics.com/article/S0149-2918(18)30325-4/fulltext

Variability of Multiple Sclerosis Spasticity Symptoms in Response to THC:CBD Oromucosal Spray: Tracking Cases through Clinical Scales and Video Recordings.

Logo Case Reports in Neurology

“Multiple sclerosis (MS) is an inflammatory and neurodegenerative autoimmune demyelinating disease of the central nervous system. Patients exhibit heterogeneous patterns of disabling symptoms, including spasticity. In the majority of patients with MS spasticity, it and its associated symptoms contribute to disability, interfere with performance of everyday activities, and impair quality of life. Even under treatment with oral antispasticity drugs, about a third of patients continue to experience spasticity of moderate to severe intensity, underscoring the need for additional treatment options.

The efficacy of tetrahydrocannabinol: cannabidiol (THC:CBD) oromucosal spray as add-on therapy in patients with refractory MS spasticity has been demonstrated in clinical trials and observational studies.

To gain insight into patients’ response to treatment at the individual level, in-depth changes from baseline in various clinical scales and video-assessed parameters were evaluated in patients with resistant MS spasticity before and after 1 month of treatment with THC:CBD oromucosal spray. All 6 patients showed ≥20% improvement in the spasticity Numerical Rating Scale (i.e., were initial responders to treatment), but displayed individual variability in other spasticity-related parameters.

Improved Modified Ashworth Scale scores were observed in 5 cases, with a reduction of -2/-3 points in lower limb scores for 1 patient who also showed benefit in terms of a more stable gait but modest improvement in the timed 10-meter walk test (10MWT). Improvement in the 10MWT (or 25-foot walk test) was noted in 4 of the 6 cases. THC:CBD oromucosal spray also improved upper limb function as indicated by faster 9-Hole Peg Test results.”

A Brief Background on Cannabis: From Plant to Medical Indications.

 Ingenta Connect

“Cannabis has been used as a medicinal plant for thousands of years.

As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes.

Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatile compounds that occur in many plants and have distinct odors.

Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems for synthesis, transport, and degradation, are called the Endocannabinoid System.

The two most prevalent and commonly known cannabinoids in the cannabis plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol.

The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fatty tissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive.

Cannabis and cannabinoids have been indicated for several medical conditions.

There is evidence of efficacy in the symptomatic treatment of nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis has also been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but there is not good evidence to support its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe.

Here, we provided a summary of the history of cannabis, its pharmacology, and its medical uses.”

https://www.ncbi.nlm.nih.gov/pubmed/30139415

Efficacy and Safety of Adjunctive Cannabidiol in Patients with Lennox-Gastaut Syndrome: A Systematic Review and Meta-Analysis.

“Lennox-Gastaut syndrome (LGS) is a severe developmental epileptic encephalopathy, and available interventions fail to control seizures in most patients. Cannabidiol (CBD) is a major chemical of marijuana, which has anti-seizure properties and different mechanisms of action compared with other approved antiepileptic drugs (AEDs).

OBJECTIVE:

The aim was to evaluate the efficacy and safety of CBD as adjunctive treatment for seizures in patients with LGS using meta-analytical techniques.

METHODS:

Randomized, placebo-controlled, single- or double-blinded trials were identified. Main outcomes included the ≥ 50% reduction in baseline drop and non-drop seizure frequency, and the incidence of treatment withdrawal and adverse events (AEs). Risk ratios (RRs) with 95% confidence intervals (CIs) were estimated through the inverse variance method.

RESULTS:

Two trials were included involving 396 participants. Patients presenting ≥ 50% reduction in drop seizure frequency during the treatment were 40.0% with CBD and 19.3% with placebo [RR 2.12 (95% CI 1.48-3.03); p < 0.001]. The rate of non-drop seizure frequency was reduced by 50% or more in 49.4% of patients in the CBD and 30.4% in the placebo arms [RR 1.62 (95% CI 1.09-2.43); p = 0.018]. The RR for CBD withdrawal was 4.93 (95% CI 1.50-16.22; p = 0.009). The RR to develop any AE during CBD treatment was 1.24 (95% CI 1.11-1.38; p < 0.001). AEs significantly associated with CBD were somnolence, decreased appetite, diarrhea and increased serum aminotransferases.

CONCLUSIONS:

Adjunctive CBD resulted in a greater reduction in seizure frequency and a higher rate of AEs than placebo in patients with LGS presenting seizures uncontrolled by concomitant AEDs.”

“Cannabidiol in the Lennox-Gastaut Syndrome.”  https://www.nejm.org/doi/10.1056/NEJMc1807878

Optimization Of A Preclinical Therapy Of Cannabinoids In Combination With Temozolomide Against Glioma.

 Biochemical Pharmacology “Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.

Δ9-Tetrahydrocannabinol (THC, the major active ingredient of marijuana), and other cannabinoids have been shown to exert antitumoral actions in animal models of cancer, including glioma. The mechanism of these anticancer actions relies, at least in part, on the ability of these compounds to stimulate autophagy-mediated apoptosis in tumor cells.

Previous observations from our group demonstrated that local administration of THC (or of THC + CBD at a 1:1 ratio, a mixture that resembles the composition of the cannabinoid-based medicine Sativex®) in combination with Temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

With the aim of optimizing the possible clinical utilization of cannabinoids in anti-GBM therapies, in this work we explored the anticancer efficacy of the systemic administration of cannabinoids in combination with TMZ in preclinical models of glioma.

Our results show that oral administration of THC+CBD (Sativex-like extracts) in combination with TMZ produces a strong antitumoral effect in both subcutaneous and intracranial glioma cell-derived tumor xenografts. In contrast, combined administration of Sativex-like and BCNU (another alkylating agent used for the treatment of GBM which share structural similarities with the TMZ) did not show a stronger effect than individual treatments.

Altogether, our findings support the notion that the combined administration of TMZ and oral cannabinoids could be therapeutically exploited for the management of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30125556

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303496