GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine

Image result for oncogene

“The life expectancy for pancreatic cancer patients has seen no substantial changes in the last 40 years as very few and mostly just palliative treatments are available. As the five years survival rate remains around 5%, the identification of novel pharmacological targets and development of new therapeutic strategies are urgently needed.

Here we demonstrate that inhibition of the G protein-coupled receptor GPR55, using genetic and pharmacological approaches, reduces pancreatic cancer cell growth in vitro and in vivo and we propose that this may represent a novel strategy to inhibit pancreatic ductal adenocarcinoma (PDAC) progression.

Specifically, we show that genetic ablation of Gpr55 in the KRASWT/G12D/TP53WT/R172H/Pdx1-Cre+/+ (KPC) mouse model of PDAC significantly prolonged survival.

Importantly, KPC mice treated with a combination of the GPR55 antagonist Cannabidiol (CBD) and gemcitabine (GEM, one of the most used drugs to treat PDAC), survived nearly three times longer compared to mice treated with vehicle or GEM alone.

Mechanistically, knockdown or pharmacologic inhibition of GPR55 reduced anchorage-dependent and independent growth, cell cycle progression, activation of mitogen-activated protein kinase (MAPK) signalling and protein levels of ribonucleotide reductases in PDAC cells. Consistent with this, genetic ablation of Gpr55 reduced proliferation of tumour cells, MAPK signalling and ribonucleotide reductase M1 levels in KPC mice.

Combination of CBD and GEM inhibited tumour cell proliferation in KPC mice and it opposed mechanisms involved in development of resistance to GEM in vitro and in vivo. Finally, we demonstrate that the tumour suppressor p53 regulates GPR55 protein expression through modulation of the microRNA miR34b-3p.

Our results demonstrate the important role played by GPR55 downstream of p53 in PDAC progression. Moreover our data indicate that combination of CBD and GEM, both currently approved for medical use, might be tested in clinical trials as a novel promising treatment to improve PDAC patients’ outcome.”

https://www.nature.com/articles/s41388-018-0390-1

“Cannabinoid improves survival rates of mice with pancreatic cancer”  https://medicalxpress.com/news/2018-07-cannabinoid-survival-mice-pancreatic-cancer.html

“Study: CBD From Marijuana Plus Chemotherapy Tripled Cancer Survival Rates In Mice” https://www.forbes.com/sites/daviddisalvo/2018/07/31/study-cbd-from-marijuana-plus-chemotherapy-triples-cancer-survival-rates-in-mice/#491942d44630

“Cannabis drug may help pancreatic-cancer patients live almost THREE TIMES longer, study finds” http://www.dailymail.co.uk/health/article-6007275/Cannabis-drug-help-pancreatic-cancer-patients-live-THREE-TIMES-longer-study-finds.html

“Substance in cannabis ‘could boost pancreatic cancer treatments’. Scientists say cannabidiol could extend patients’ lives by a matter of years”  https://www.theguardian.com/science/2018/jul/30/substance-in-cannabis-could-boost-pancreatic-cancer-treatments

“Cannabinoid mice trial holds hope for pancreatic cancer patients”  https://www.smh.com.au/national/cannabinoid-mice-trial-holds-hope-for-pancreatic-cancer-patients-20180731-p4zuls.html

“Medical cannabis extract could help pancreatic cancer patients live longer, early study suggests” https://www.independent.co.uk/news/health/pancreatic-cancer-medical-cannabis-cbd-oil-cannabidiol-chemotherapy-a8470406.html

“Cancer ‘remarkable’ treatment – cannabis CBD could improve survival rate by THREE times. CANCER symptoms could be prevented with a “remarkable” new treatment, which includes cannabis CBD, scientists have revealed. Pancreatic cancer survival rates could be improved by three times, by adding CBD into chemotherapy treatments, they said.” https://www.express.co.uk/life-style/health/996657/cancer-treatment-pancreatic-symptoms-cannabis-cbd

“Compound in cannabis could help pancreatic cancer patients live significantly longer” https://www.deccanchronicle.com/lifestyle/health-and-wellbeing/310718/compound-in-cannabis-could-help-pancreatic-cancer-patients-live-signif.html

Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells.

Experimental Cell Research

“Multipotent mesenchymal stromal cells (MSCs) support wound healing processes. These cells express toll-like receptors (TLRs). TLRs perform important key functions when the immune system is confronted with danger signals. TLR ligation by lipopolysaccharides (LPS) activates MSCs and induces intracellular signaling cascades, which affect their differentiation profile, increase the release of inflammatory cytokines and the production of reactive oxygen species. Continuing exposure to LPS triggers prolonged inflammatory reactions, which may lead to deleterious conditions, e.g. non-healing wounds.

Cannabidiol (CBD) exerts anti-inflammatory processes through cannabinoid receptor dependent and independent mechanisms. In the present study, we examined whether CBD could influence the inflammatory MSC phenotype.

Exposure to LPS increased the release of IL-6, as well as other soluble factors, and elevated levels of oxidized macromolecules found in cell homogenisates. While the amount of IL-6 was unaffected, co-treatment with CBD reduced the oxidative stress acting on the cells. LPS inhibited adipogenic as well as chondrogenic differentiation, which was attenuated by CBD treatment. In the case of adipogenesis, the disinhibitory effect probably depended on CBD interaction with the peroxisome proliferator-activated receptor-γ.

CBD could exert mild immunosuppressive properties on MSCs, while it most effectively acted anti-oxidatively and by restoring the differentiation capacity upon LPS treatment.” https://www.ncbi.nlm.nih.gov/pubmed/30036540

“Cannabidiol (CBD) reduces oxidative stress and restores adipogenesis and chondrogenesis of mesenchymal stromal cells (MSCs) upon lipopolysaccharides (LPS)  exposure.” https://linkinghub.elsevier.com/retrieve/pii/S0014482718304312

VCE-004.3, A CANNABIDIOL AMINOQUINONE DERIVATIVE, PREVENTS BLEOMYCIN-INDUCED SKIN FIBROSIS AND INFLAMMATION TROUGH PPARγ- AND CB2 -DEPENDENT PATHWAYS.

Publication cover image

“The endocannabinoid system (ECS) as well as PPARγ are relevant targets for the development of novel compounds against fibrotic diseases such as Systemic Sclerosis (SSc), also called Scleroderma.

The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and to study it anti-inflammatory and anti-fibrotic activities.

CONCLUSION AND IMPLICATIONS:

VCE-004.3 is a novel semi-synthetic cannabidiol derivative behaving as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of Scleroderma.”

https://www.ncbi.nlm.nih.gov/pubmed/30033591

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14450

Tetrahydrocannabinol/Cannabidiol Oromucosal Spray in Patients With Multiple Sclerosis: A Pilot Study on the Plasma Concentration-Effect Relationship.

 Image result for ovid journal

“We aimed to assess the potential relationship between intrasubject 9-tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray plasma profiles and clinical effects elicited by subacute dosing in chronically treated patients with multiple sclerosis (MS).

METHODS:

The study design was pilot, single center, open, and prospective. The patients were challenged with a morning test dose of 2 THC/CBD sprays at a 15-minute interval. Venous blood samples were collected before the first spray administration and every 30 minutes after the second spray, until 240 minutes postdosing. Patients rated their spasticity by the Numerical Rating Scale (NRS) simultaneously with blood drawings. Postural and motor tests were performed before the first spray and 90 and 180 minutes thereafter.

RESULTS:

Twelve patients were recruited. Peak plasma concentrations of THC/CBD largely varied among patients, from 0.60 to 13.29 ng/mL for THC and 0.55 to 11.93 ng/mL for CBD. Time to peak plasma concentrations ranged from 150 to 240 minutes for THC and 90 to 240 minutes for CBD. Patients’ NRS serial scores decreased after dosing, from a median value of 6 to 3.5 (P < 0.001). A significant inverse correlation was observed between median intrasubject repeated NRS scores and corresponding median values of both THC (P < 0.01) and CBD (P < 0.002) plasma concentrations. No significant effect of cannabinoids dosing could be appreciated according to posturographic and motor tests.

CONCLUSIONS:

Our kinetic dynamic findings from THC/CBD oromucosal spray are the first obtained in real MS patients. Although preliminary, they suggest that subacute dosing might elicit a subjective clinically significant effect on MS-related spasticity, paralleling cannabinoids measurable plasma concentrations.”

https://www.ncbi.nlm.nih.gov/pubmed/30024443

Cannabidiol does not display drug abuse potential in mice behavior.

Image result for aps acta pharmacologica

“Recent evidence suggests that cannabidiol (CBD) may be useful for the treatment of different neuropsychiatric disorders.

However, some controversy regarding its profile as a drug of abuse hampers the further development of basic and clinical studies.

In this study, the behavioral profile of CBD as a potential drug of abuse was evaluated in C57BL/6J mice.

Taken together, these results show that CBD lacks activity as a drug of abuse and should stimulate the development of the basic and clinical studies needed to elucidate its potential therapeutic use for the treatment of neuropsychiatric and drug use disorders.”

[Should ophtalmologists recommend medical cannabis to patients with glaucoma?]

 Image result for ugeskr laeger

“Cannabis has been widely used for various medical purposes since before year 2000 BC. Its effects are mediated by cannabinoids and stimulation of mainly G-protein coupled cannabinoid receptors.

In 1971, subjects who smoked marihuana, showed a decrease in the intraocular pressure.

Later investigations additionally revealed a neuroprotective effect of both ∆-9-tetrahydrocannabinol and cannabidiol (CBD).

Furthermore, CBD was found to promote neurogenesis. The aim of this review is to provide an overview of the potential use of cannabinoids in the treatment of glaucoma.”

https://www.ncbi.nlm.nih.gov/pubmed/30020072

A Cross-Sectional Study of Cannabidiol Users.

Cannabis and Cannabinoid Research cover image

“Introduction: Preclinical and clinical studies suggest that cannabidiol (CBD) found in Cannabis spp. has broad therapeutic value. CBD products can currently be purchased online, over the counter and at Cannabis-specific dispensaries throughout most of the country, despite the fact that CBD is generally deemed a Schedule I controlled substance by the U.S. Drug Enforcement Administration and renounced as a dietary supplement ingredient by the U.S. Food and Drug Administration. Consumer demand for CBD is high and growing, but few studies have examined the reasons for increasing CBD use.

Results: Almost 62% of CBD users reported using CBD to treat a medical condition. The top three medical conditions were pain, anxiety, and depression. Almost 36% of respondents reported that CBD treats their medical condition(s) “very well by itself,” while only 4.3% reported “not very well.” One out of every three users reported a nonserious adverse effect. The odds of using CBD to treat a medical condition were 1.44 (95% confidence interval, 1.16-1.79) times greater among nonregular users of Cannabis than among regular users.

Conclusion: Consumers are using CBD as a specific therapy for multiple diverse medical conditions-particularly pain, anxiety, depression, and sleep disorders. These data provide a compelling rationale for further research to better understand the therapeutic potential of CBD.”

Novel mechanism of cannabidiol-induced apoptosis in breast cancer cell lines.

The Breast Home

“Studies have emphasized an antineoplastic effect of the non-psychoactive, phyto-cannabinoid, Cannabidiol (CBD). However, the molecular mechanism underlying its antitumor activity is not fully elucidated.

Herein, we have examined the effect of CBD on two different human breast cancer cell lines: the ER-positive, well differentiated, T-47D and the triple negative, poor differentiated, MDA-MB-231 cells.

In both cell lines, CBD inhibited cell survival and induced apoptosis in a dose dependent manner as observed by MTT assay, morphological changes, DNA fragmentation and ELISA apoptosis assay. CBD-induced apoptosis was accompanied by down-regulation of mTOR, cyclin D1 and up-regulation and localization of PPARγ protein expression in the nuclei and cytoplasmic of the tested cells.

The results suggest that CBD treatment induces an interplay among PPARγ, mTOR and cyclin D1 in favor of apoptosis induction in both ER-positive and triple negative breast cancer cells, proposing CBD as a useful treatment for different breast cancer subtypes.”

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

Open-label use of Highly* purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes.

“We studied our collective open-label, compassionate use experience in using cannabidiol (CBD) to treat epilepsy in patients with CDKL5 deficiency disorder and Aicardi, Doose, and Dup15q syndromes. This open-label drug trial provides class III evidence for the long-term safety and efficacy of cannabidiol (CBD) administration in patients with treatment-resistant epilepsy (TRE) associated with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Adjuvant therapy with CBD showed similar safety and efficacy for these four syndromes as reported in a diverse population of TRE etiologies.” https://www.ncbi.nlm.nih.gov/pubmed/30006259 https://www.epilepsybehavior.com/article/S1525-5050(18)30191-4/fulltext

“Medical cannabis for epilepsy approved in FDA first”  https://www.medicalnewstoday.com/articles/322283.php

Effectiveness of Raw, Natural Medical Cannabis Flower for Treating Insomnia under Naturalistic Conditions.

medicines-logo

“Background: We use a mobile software application (app) to measure for the first time, which fundamental characteristics of raw, natural medical Cannabis flower are associated with changes in perceived insomnia under naturalistic conditions.

Methods: Four hundred and nine people with a specified condition of insomnia completed 1056 medical cannabis administration sessions using the Releaf AppTM educational software during which they recorded real-time ratings of self-perceived insomnia severity levels prior to and following consumption, experienced side effects, and product characteristics, including combustion method, cannabis subtypes, and/or major cannabinoid contents of cannabis consumed. Within-user effects of different flower characteristics were modeled using a fixed effects panel regression approach with standard errors clustered at the user level.

Results: Releaf AppTM users showed an average symptom severity reduction of -4.5 points on a 0⁻10 point visual analogue scale (SD = 2.7, d = 2.10, p < 0.001). Use of pipes and vaporizers was associated with greater symptom relief and more positive and context-specific side effects as compared to the use of joints, while vaporization was also associated with lower negative effects. Cannabidiol (CBD) was associated with greater statistically significant symptom relief than tetrahydrocannabinol (THC), but the cannabinoid levels generally were not associated with differential side effects. Flower from C. sativa plants was associated with more negative side effects than flower from C. indica or hybrid plant subtypes.

Conclusions: Consumption of medical Cannabis flower is associated with significant improvements in perceived insomnia with differential effectiveness and side effect profiles, depending on the product characteristics.”

https://www.ncbi.nlm.nih.gov/pubmed/29997343

http://www.mdpi.com/2305-6320/5/3/75