Cannabidiol reverses attentional bias to cigarette cues in a human experimental model of tobacco withdrawal.

Addiction banner

“Cannabidiol (CBD), a non-intoxicating cannabinoid, may be a promising novel smoking cessation treatment due to its anxiolytic properties, minimal side-effects and research showing it may modify drug cue salience.

We used an experimental medicine approach with dependent cigarette smokers to investigate if (1) overnight nicotine abstinence, compared with satiety, will produce greater attentional bias (AB), higher pleasantness ratings of cigarette-related stimuli and increased craving and withdrawal; (2) CBD in comparison to placebo, would attenuate AB, pleasantness of cigarette-related stimuli, craving and withdrawal and not produce any side-effects.

FINDINGS:

When participants received placebo, tobacco abstinence increased AB (p=.001, d =.789) compared with satiety. However, CBD reversed this effect, such that automatic AB was directed away from cigarette cues (p=.007, d= .704) and no longer differed from satiety (p=.82). Compared with placebo, CBD also reduced explicit pleasantness of cigarette images (p=.011; d=.514). Craving (Bayes Factor: 7.07) and withdrawal (Bayes Factor: 6.48) were unaffected by CBD, but greater in abstinence compared with satiety. Systolic blood pressure decreased under CBD during abstinence.

CONCLUSIONS:

A single 800mg oral dose of cannabidiol (CBD) reduced the salience and pleasantness of cigarette cues, compared with placebo, after overnight cigarette abstinence in dependent smokers. CBD did not influence tobacco craving or withdrawal or any subjectively rated side-effects.”

https://www.ncbi.nlm.nih.gov/pubmed/29714034

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14243

“Cannabidiol reduces attentional bias to cigarette cues in nicotine addicts, study finds” http://www.psypost.org/2018/06/cannabidiol-reduces-attentional-bias-cigarette-cues-nicotine-addicts-study-finds-51351

Cannabis, from Plant to Pill.

British Journal of Clinical Pharmacology banner

“The therapeutic application of Cannabis is attracting substantial public and clinical interest. The Cannabis plant has been described as a veritable ‘treasure trove’, producing more than a hundred different cannabinoids, although the focus to date has been on the psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD).

Other numerous secondary metabolites of Cannabis the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are hypothesised to contribute synergistically to their therapeutic benefits, an attribute that has been described as the ‘entourage effect’.

The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and standardised growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence (flos) is the source.

Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites can be blended to provide a specific ratio of major cannabinoids (THC:CBD) or individual cannabinoids can be isolated, purified and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of Cannabis possessing elevated levels of specific cannabinoids or other secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/29701252

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.13618

Palatability and oral cavity tolerability of THC:CBD oromucosal spray and possible improvement measures in multiple sclerosis patients with resistant spasticity: a pilot study.

Future Medicine Logo

“Complaints about Δ9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (Sativex®; GW Pharma Ltd, Sailsbury, UK) in the management of multiple sclerosis spasticity include unpleasant taste and oral mucosal anomalies.

This pilot study assessed the use of sugar-free chewing gum and/or a refrigerated bottle of THC:CBD oromucosal spray to mitigate these effects.

RESULTS:

Taste perception in patients receiving chewing gum ± cold bottle intervention (Groups A and C combined) was significantly (p = 0.0001) improved from baseline to week 4 while maintaining spasticity control.

CONCLUSION:

Patient comfort, satisfaction and treatment adherence may benefit from these interventions.”

https://www.ncbi.nlm.nih.gov/pubmed/29683408

https://www.futuremedicine.com/doi/10.2217/nmt-2017-0056

Paraneoplastic cerebellar degeneration: Yo antibody alters mitochondrial calcium buffering capacity.

Neuropathology and Applied Neurobiology banner

“Neurodegeneration is associated with dysfunction of calcium buffering capacity and thereby sustained cellular and mitochondrial calcium overload. Paraneoplastic cerebellar degeneration (PCD), characterized by progressive Purkinje neuron degeneration following paraneoplastic Yo antibody internalisation and binding to cerebellar degeneration-related protein CDR2 and CDR2L, has been linked to intracellular calcium homeostasis imbalance due to calbindin D28k malfunction. Therefore, we hypothesized that Yo antibody internalisation affects not only calbindin calcium binding capacity but also calcium-sensitive mitochondrial-associated signalling, causing mitochondrial calcium overload and thereby Purkinje neuron death.

CONCLUSION:

These findings suggest that minimising intracellular calcium overload toxicity either directly with cyclosporin-A or indirectly with cannabidiol or the ROS scavenger butylated hydroxytoluene promotes mitochondrial calcium homeostasis and may therefore be used as future neuroprotective therapy for PCD patients.”

https://www.ncbi.nlm.nih.gov/pubmed/29679372

https://onlinelibrary.wiley.com/doi/abs/10.1111/nan.12492

Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users.

Cannabis and Cannabinoid Research cover image

“Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ9-tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use.

Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment (p=0.017 uncorrected) by 1.58% (Cohen’s d=0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users.

Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against brain structural harms conferred by chronic cannabis use. Furthermore, these outcomes suggest that CBD may be a useful adjunct in treatments for cannabis dependence and may be therapeutic for a range of clinical disorders characterized by hippocampal pathology (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.ncbi.nlm.nih.gov/pubmed/29682609

“In conclusion, our findings are the first to demonstrate an ameliorating effect of CBD treatment upon brain structural harms characteristic of regular cannabis use. Furthermore, these results speak to the potential for CBD treatment to restore hippocampal pathology in a range of clinical populations (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.liebertpub.com/doi/10.1089/can.2017.0047

Hemp shows potential for treating ovarian cancer

“Researchers demonstrate hemp’s ability to slow cancer growth and uncover mechanism for its cancer-fighting ability.

Results from some of the first studies to examine hemp’s ability to fight cancer show that it might one day be useful as plant-based treatment for ovarian cancer. Hemp is part of the same cannabis family as marijuana but doesn’t have any psychoactive properties or cause addiction.

“Hemp, like marijuana, contains therapeutically valuable components such as cannabidiol, cannabinol, and tetrahydrocannabinol,”

“Our findings from this research as well as prior research show that KY hemp slows ovarian cancer comparable to or even better than the current ovarian cancer drug Cisplatin,” said Turner. “Since Cisplatin exhibits high toxicity, we anticipate that hemp would carry less side effects.”

https://www.sciencedaily.com/releases/2018/04/180423155046.htm

“Hemp Shows Potential for Treating Ovarian Cancer”  https://www.eurekalert.org/multimedia/pub/167927.php

“Hemp Can Fight Cancer Too, Reveal Scientists in New Cannabis Study”  https://www.inverse.com/article/44039-cancer-hemp-plant-based-treatment

“Studies show hemp’s potential for treating ovarian cancer”         https://www.news-medical.net/news/20180424/Studies-show-hemps-potential-for-treating-ovarian-cancer.aspx

“Hemp shows potential for treating ovarian cancer”  https://www.europeanpharmaceuticalreview.com/news/75103/hemp-treating-ovarian-cancer/

“Hemp portrays possibility for curing ovarian cancer”  https://ebuzzcommunity.com/2018/04/hemp-portrays-possibility-for-curing-ovarian-cancer/

“Hemp Extract Inhibits Growth Of Ovarian Cancer, Research Finds”  https://thefreshtoast.com/rx/hemp-extract-inhibits-growth-of-ovarian-cancer-research-finds/

Cannabidiol Based Medical Cannabis in Children with Autism- a Retrospective Feasibility Study

Home

“Objective: This retrospective study assessed safety, tolerability and efficacy of cannabidiol (CBD) based medical cannabis, as an adjuvant therapy, for refractory behavioral problems in children with ASD.

Background: Anecdotal evidence of successful cannabis treatment in children with autism spectrum disorder (ASD) are accumulating but formal studies are lacking.

Design/Methods: Sixty children with ASD (age = 11.8± 3.5, range 5.0–17.5; 77% low functioning; 83% boys) were treated with oral CBD and tetrahydrocannabinol (THC) at a ratio of 20:1. The dose was up-titrated to effect (maximal CBD dose − 10mg/kg/d). Tolerability and efficacy were assessed using a modified Liverpool Adverse Events Profile, the Caregiver Global Impression of Change (CGIC) scale, the Home Situations Questionnaire–Autism Spectrum Disorder (HSQ-ASD) and the Autism Parenting Stress Index (APSI).

Results: Following the cannabis treatment, behavioral outbreaks were much improved or very much improved (on the CGIC scale) in 61% of patients. The anxiety and communication problems were much or very much improved in 39% and 47% respectively. Disruptive behaviors, were improved by 29% from 4.74±1.82 as recorded at baseline on the HSQ-ASD to 3.36±1.56 following the treatment. Parents reported less stress as reflected in the APSI scores, changing by 33% from 2.04±0.77 to 1.37±0.59. The effect on all outcome measures was more apparent in boys with non-syndromic ASD. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%).

Conclusions: This preliminary study support the feasibility of CBD based medical cannabis as a promising treatment option for refractory behavioral problems in children with ASD. Based on these promising results, we have launched a large, double blind, placebo controlled cross-over trial with 120 participants (NCT02956226).”

http://n.neurology.org/content/90/15_Supplement/P3.318

Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents – An observational, longitudinal study.

Cover image volume 40, Issue 5

“The objective of this observational study was to evaluate the efficacy of medical cannabis for the treatment of refractory epilepsy.

Fifty-seven patients (age 1-20 years) with epilepsy of various etiologies were treated with Cannabis oil extract (CBD/THC ratio of 20:1) for at least 3 months (Median follow up time-18 months). Forty-Six Patients were included in the efficacy analysis. Average CBD dose was11.4 mg/kg/d.

Twenty-six patients (56%) had ≤50% reduction in mean monthly seizure frequency. There was no statistically significant difference in response rate among various epilepsy etiologies, and cannabis strain used.

Younger age at treatment onset (<10 years) and higher CBD dose (>11 mg/kg/d) were associated with better response to treatment. Adverse reactions were reported in 46% of patients and were the main reason for treatment cessation.

Our results suggest that adding CBD-enriched cannabis extract to the treatment regimen of patients with refractory epilepsy may result in a significant reduction in seizure frequency according to parental reports.”

Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons.

Molecular Pharmacology

“Δ9-THC and cannabidiol (CBD) are two main cannabinoid constituents of marijuana and hashish. The pharmacology of Δ9-THC has been extensively studied, while our understanding of the pharmacology of CBD has remained limited, despite excitement in CBD’s potential role in treating certain pediatric epilepsies and its reputation for attenuating some Δ9-THC-induced effects.

It was established early on that CBD binds poorly to the orthosteric site of CB1 or CB2 cannabinoid receptors and its actions were commonly attributed to other non-cannabinoid receptor mechanisms. However, recent evidence suggests that CBD does indeed act at cannabinoid CB1 receptors as a negative allosteric modulator (NAM) of CB1 signaling. By altering the orthosteric signaling of a GPCR, allosteric modulators greatly increase the richness of GPCR pharmacology.

We have recently surveyed candidate CB1 NAMs in autaptic hippocampal neurons, a well-characterized neuronal model of endogenous cannabinoid signaling, and have now tested CBD in this model. We find that while CBD has no direct effect on excitatory transmission it does inhibit two forms of endogenous cannabinoid-mediated retrograde synaptic plasticity: depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE), while not affecting signaling via GABA-B receptors.

These results are consistent with the recently described NAM activity of CBD and suggest interesting possible mechanisms for CBD’s therapeutic actions.”

A Naturalistic Examination of the Perceived Effects of Cannabis on Negative Affect

Cover image

“Cannabis is commonly used to alleviate symptoms of negative affect. However, a paucity of research has examined the acute effects of cannabis on negative affect in everyday life.

The current study provides a naturalistic account of perceived changes in symptoms of depression, anxiety, and stress as a function of dose and concentration of Δ9tetrahydrocannabinol (THC) and cannabidiol (CBD).

Cannabis is commonly used to alleviate depression, anxiety, and stress. Indeed, one of the most commonly reported motives for cannabis use is to cope with stress, with 72% of daily cannabis users reporting use of cannabis to relax or relieve tension.

Results from the present study indicate that medical cannabis users report a substantial and significant reduction in symptoms of negative affect shortly after using cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/29656267

https://www.sciencedirect.com/science/article/pii/S0165032718303100