Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose.

Image result for Transl Psychiatry.

“Although all current antipsychotics act by interfering with the action of dopamine at dopamine D2 receptors, two recent reports showed that 800 to 1000 mg of cannabidiol per day alleviated the signs and symptoms of schizophrenia, although cannabidiol is not known to act on dopamine receptors. Because these recent clinical findings may indicate an important exception to the general rule that all antipsychotics interfere with dopamine at dopamine D2 receptors, the present study examined whether cannabidiol acted directly on D2 receptors, using tritiated domperidone to label rat brain striatal D2 receptors. It was found that cannabidiol inhibited the binding of radio-domperidone with dissociation constants of 11 nm at dopamine D2High receptors and 2800 nm at dopamine D2Low receptors, in the same biphasic manner as a dopamine partial agonist antipsychotic drug such as aripiprazole. The clinical doses of cannabidiol are sufficient to occupy the functional D2High sites. it is concluded that the dopamine partial agonist action of cannabidiol may account for its clinical antipsychotic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/27754480

Δ9-THC Intoxication by Cannabidiol-Enriched Cannabis Extract in Two Children with Refractory Epilepsy: Full Remission after Switching to Purified Cannabidiol.

Image result for Front Pharmacol

“Animal studies and preliminary clinical trials have shown that cannabidiol (CBD)-enriched extracts may have beneficial effects for children with treatment-resistant epilepsy.

We describe the cases of two children with treatment-resistant epilepsy (Case A with left frontal dysplasia and Case B with Dravet Syndrome) with initial symptom improvement after the introduction of CBD extracts followed by seizure worsening after a short time.

The children presented typical signs of intoxication by Δ9-THC (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched extract.

The extract was replaced by the same dose of purified CBD with no Δ9-THC in both cases, which led to improvement in intoxication signs and seizure remission.

These cases support pre-clinical and preliminary clinical evidence suggesting that CBD may be effective for some patients with epilepsy.

Moreover, the cases highlight the need for randomized clinical trials using high-quality and reliable substances to ascertain the safety and efficacy of cannabinoids as medicines.”

https://www.ncbi.nlm.nih.gov/pubmed/27746737

Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.

Image result for Front Pharmacol.

“Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects.

In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life.

Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease.

The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats.

Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia.”

https://www.ncbi.nlm.nih.gov/pubmed/27733830

A New Study Suggests Cannabis Could Treat Cervical Cancer

Image result for motherboard logo

“A new study suggests that cannabis might be useful in treating cervical cancer.

Through in vitro, or test tube/petri dish, analysis, researchers from the biochemistry department at North-West University in Potchefstroom, South Africa found that the non-psychotropic cannabinoid, or chemical compound, CBD (cannabidiol), taken from a Cannabis sativa extract, could hold anticarcinogenic properties. They pointed out that cannabis acted on the cancerous cells through apoptosis, or a process of cell death, causing only the cancerous cells to kill themselves, and inhibiting their growth.

Cervical cancer is no longer a leading cause of death as much as it used to be in the United States, thanks in large part to the widespread use of pap smears, but it’s still a widespread threat. And in Sub-Saharan Africa, it kills 250,000 women every year. “This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies,” the study’s authors wrote in the BMC Complementary and Alternative Medicine journal. “In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines.”

It will take much more research before cannabis can be integrated into official cervical cancer treatments in sub-Saharan Africa. But earlier studies also shows that cannabis has been useful in treating not only the symptoms of cancer and chemotherapy, but also the cancer itself.

One study from the journal of Current Clinical Pharmacology found that cannabis served as a preventative agent, reducing inflammation, which researchers also said was useful in reducing the likelihood of cancer. Another study from Oncology Hematology also noted cannabis’ anti-cancer effects, explaining how the plant’s cannabinoids inhibited tumor growth in vitro, such as in a petri dish or test tube, and in vivo, or a living organism.

A handful of other studies have also looked into cannabis as a treatment specifically for cervical cancer. Another from the University Hospital in Geneva, Switzerland, found that the cannabinoids, including the body’s own endocannabinoids, offered “attractive opportunities for the development of novel potent anticancer drugs.”

With that said, often medical marijuana is ingested via capsules, tinctures, vaporizable oils, and other non-smokeable, more pharmaceutical-style forms. Should cannabis eventually become approved for cervical cancer treatment in Africa, it may be up for debate whether whole plant therapy (in which all the cannabinoids work synergistically through the “entourage effect”) or specific cannabinoid therapy is best.”

http://motherboard.vice.com/read/a-new-study-suggests-cannabis-could-treat-cervical-cancer

Phytocannabinoids: a unified critical inventory.

Image result for natural product reports

“Cannabis sativa L. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.

The modular nature of the pathways that merge into the phytocannabinoid chemotype translates in differences in the nature of the resorcinyl side-chain and the degree of oligomerization of the isoprenyl residue, making the definition of phytocannabinoid elusive from a structural standpoint.

A biogenetic definition is therefore proposed, splitting the phytocannabinoid chemotype into an alkyl- and a β-aralklyl version, and discussing the relationships between phytocannabinoids from different sources (higher plants, liverworts, fungi).

The startling diversity of cannabis phytocannabinoids might be, at least in part, the result of non-enzymatic transformations induced by heat, light, and atmospheric oxygen on a limited set of major constituents (CBG, CBD, Δ9-THC and CBC and their corresponding acidic versions), whose degradation is detailed to emphasize this possibility.

The diversity of metabotropic (cannabinoid receptors), ionotropic (thermos-TRPs), and transcription factors (PPARs) targeted by phytocannabinoids is discussed. The integrated inventory of these compounds and their biological macromolecular end-points highlights the opportunities that phytocannabinoids offer to access desirable drug-like space beyond the one associated to the narcotic target CB1.”

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

pharmaceuticals-logo

“Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol.

It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury.

Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system.

In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent.

Of the CB₁ receptor-independent cannabis, the most important is CBD.

In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD.

In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27713349

The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism.

pharmaceuticals-logo

“Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects.

Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC) and the non-psychotropic cannabidiol (CBD) modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC).

The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO), suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system.

Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling.

We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.”

Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked with Amyotrophic Lateral Sclerosis.

Image result for J Cell Biochem.

“Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages.

However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy.

Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level.

Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models.

In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system.

Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol.

Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at early stage using hGMSCs as a compelling in vitro system.”

https://www.ncbi.nlm.nih.gov/pubmed/27714895

Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex.

Image result for Epilepsia.

“Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder with highly variable expression.

The most common neurologic manifestation of TSC is epilepsy, which affects approximately 85% of patients, 63% of whom develop treatment-resistant epilepsy.

Herein, we evaluate the efficacy, safety, and tolerability of cannabidiol (CBD), a nonpsychoactive compound derived from the marijuana plant, as an adjunct to current antiepileptic drugs in patients with refractory seizures in the setting of TSC.

Although double-blind, placebo-controlled trials are still necessary, these findings suggest that cannabidiol may be an effective and well-tolerated treatment option for patients with refractory seizures in TSC.”

https://www.ncbi.nlm.nih.gov/pubmed/27696387

Acute and chronic effects of cannabidiol on Δ⁹-tetrahydrocannabinol (Δ⁹-THC)-induced disruption in stop signal task performance.

Image result for Exp Clin Psychopharmacol

“Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized.

To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys performing a stop signal task (SST).

These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC’s behavioral effects.”

https://www.ncbi.nlm.nih.gov/pubmed/27690502