“Celiac disease (CD) is a chronic inflammatory disease of the small bowel that occurs with the ingestion of gluten, found in several grains products. Although HLA-DQ2 variant is required for the gluten-derived peptide gliadin presentation by antigen-presenting cells to T-cells, non-HLA genetic factors account for the majority of heritable risk. Several genome-wide association studies have identified susceptibility loci for CD on chromosome 1. Cells of the immune system express the cannabinoid receptor type 2 (CB2), a plasma-membrane receptor activated by both endogenous and exogenouscannabinoids. Consistent data evidence that CB2 is linked to a variety of immune functional events and that, in the course of an inflammatory process, an increased number of receptors becomes available for activation. The cannabinoid receptor type 2 gene (CNR2; GeneID1269) maps on 1p36.11. In order to investigate the possible involvement of CB2 in CD establishment, immunohistochemistry toward CB2 receptor and CD4+ cells in small bowel biopsies from celiac children and association analysis, through TaqMan assay, of a CNR2 common missense variant, rs35761398 (CAA/CGG), resulting in the aminoacidic substitution of Glutamine at codon 63 with Arginine (Q63R), in a cohort of 327 South Italian children have been performed. We observed in this study that CB2 is up-regulated in CD small bowel biopsies and CNR2 rs35761398 is significantly associated with CD (χ(2) = 37.064; d.f. 1; p = 1.14 × 10(-9)). Our findings suggest a role of CB2 in CD. The Q63R variant, increasing more than six-fold the risk for CD susceptibility, might eventually represent a novel molecular biomarker for CD risk stratification. Indeed, we provide here further evidence that CB2 receptor plays a critical role in autoimmunity susceptibility and indicates that it represents a molecular target to pharmacologically modulate the immune components in CD.”
Tag Archives: CNR2
Elucidating Cannabinoid Biology in Zebrafish (Danio rerio).
“Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health.
Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions.
Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling.
The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol.
Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors.
These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies.
This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.”
The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice.
“The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice.
These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect.
Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted.”
Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via PGE2 and P-selectin Activity.
“Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion or migration of embryonic HSCs is currently uncharacterized.
Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development…
Together, these data suggest CNR2-signaling optimizes the production, expansion and migration of embryonic HSCs by modulating multiple downstream signaling pathways.”
Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia.
“The interactions between the cannabinoid and opioid systems for pain modulation are reciprocal. However, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. We studied these interactions with the goal of highlighting the involvement of the cannabinoid system in morphine-induced analgesia.
In both phases of the formalin test, intra paw and intrathecal morphine produced similar antinociceptive effects in C57BL/6, cannabinoid type 1 and type 2 receptor wildtype (respectively cnr1WT and cnr2WT) mice. In cnr1 and cnr2 knockout (KO) mice, at the dose used the antinociceptive effect of intra paw morphine in the inflammatory phase of the formalin test was decreased by 87% and 76%, respectively. Similarly, the antinociceptive effect of 0.1 μg spinal morphine in the inflammatory phase was abolished in cnr1KO mice and decreased by 90% in cnr2KO mice. Interestingly, the antinociceptive effect of morphine in the acute phase of the formalin test was only reduced in cnr1KO mice. Notably, systemic morphine administration produced similar analgesia in all genotypes, in both the formalin and the hot water immersion tail flick tests.
Because the pattern of expression of the mu opioid receptor (MOP), its binding properties and its G protein coupling remained unchanged across genotypes, it is unlikely that the loss of morphine analgesia in the cnr1KO and cnr2KO mice is the consequence of MOP malfunction or downregulation due to the absence of its heterodimerization with either the CB1 or the CB2 receptors, at least at the level of the spinal cord.”
Role of cannabinoid receptors and RAGE in inflammatory bowel disease.
“The endocannabinoid system is involved in many inflammatory diseases, such as Crohn’s disease (CD) and ulcerative colitis (UC). The distribution and expression of cannabinoid receptors 1 (CNR1) and 2 (CNR2) in combination with inflammatory cytokines and RAGE (receptor of advanced glycation end products), which is also overactive in these diseases, in dependency of the extent of inflammation and alteration of the colon barrier is still unclear and needs to be elucidated…
CONCLUSION:
We showed that cannabinoid receptors are expressed differentially in inflammatory bowel disease and that the expression seems to be influenced by the underlying disease and by localized inflammation.”
Presence of functional cannabinoid receptors in human endocrine pancreas.
“We examined the presence of functional cannabinoid receptors 1 and 2 (CB1, CB2) in isolated human islets, phenotyped the cells producing cannabinoid receptors and analysed the actions of selective cannabinoid receptor agonists on insulin, glucagon and somatostatin secretion in vitro. We also described the localisation on islet cells of: (1) the endocannabinoid-producing enzymes N-acyl-phosphatidyl ethanolamine-hydrolysing phospholipase D and diacylglycerol lipase; and (2) the endocannabinoid-degrading enzymes fatty acid amidohydrolase and monoacyl glycerol lipase.
RESULTS:
Human islets of Langerhans expressed CB1 and CB2 (also known as CNR1 and CNR2) mRNA and CB1 and CB2 proteins, and also the machinery involved in synthesis and degradation of 2-AG (the most abundant endocannabinoid, levels of which were modulated by glucose). Immunofluorescence revealed that CB1 was densely located in glucagon-secreting alpha cells and less so in insulin-secreting beta cells. CB2 was densely present in somatostatin-secreting delta cells, but absent in alpha and beta cells. In vitro experiments revealed that CB1 stimulation enhanced insulin and glucagon secretion, while CB2 agonism lowered glucose-dependent insulin secretion, showing these cannabinoid receptors to be functional.
CONCLUSIONS/INTERPRETATION:
Together, these results suggest a role for endogenous endocannabinoid signalling in regulation of endocrine secretion in the human pancreas.”