Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer.

Image result for Biochem Pharmacol.

“Breast cancer is the second leading cause of death among women. Although early diagnosis and development of new treatments have improved their prognosis, many patients present innate or acquired resistance to current therapies. New therapeutic approaches are therefore warranted for the management of this disease.

Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Most of these studies have been conducted with pure compounds, mainly Δ9-tetrahydrocannabinol (THC).

The cannabis plant, however, produces hundreds of other compounds with their own therapeutic potential and the capability to induce synergic responses when combined, the so-called “entourage effect”.

Here, we compared the antitumor efficacy of pure THC with that of a botanical drug preparation (BDP). The BDP was more potent than pure THC in producing antitumor responses in cell culture and animal models of ER+/PR+, HER2+ and triple-negative breast cancer. This increased potency was not due to the presence of the 5 most abundant terpenes in the preparation.

While pure THC acted by activating cannabinoid CB2 receptors and generating reactive oxygen species, the BDP modulated different targets and mechanisms of action. The combination of cannabinoids with estrogen receptor- or HER2-targeted therapies (tamoxifen and lapatinib, respectively) or with cisplatin, produced additive antiproliferative responses in cell cultures. Combinations of these treatments in vivo showed no interactions, either positive or negative.

Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.”

The Role of Cannabinoids in the Setting of Cirrhosis.

medicines-logo

“Although the mortality rates of cirrhosis are underestimated, its socioeconomic burden has demonstrated a significant global impact. Cirrhosis is defined by the disruption of normal liver architecture after years of chronic insult by different etiologies. Treatment modalities are recommended primarily in decompensated cirrhosis and specifically tailored to the different manifestations of hepatic decompensation. Antifibrogenic therapies are within an active area of investigation.

The endocannabinoid system has been shown to play a role in liver disease, and cirrhosis specifically, with intriguing possible therapeutic benefits. The endocannabinoid system comprises cannabinoid receptors 1 (CB1) and cannabinoid receptor 2 (CB2) and their ligands, endocannabinoids and exocannabinoids.

CB1 activation enhances fibrogenesis, whereas CB2 activation counteracts progression to fibrosis. Conversely, deletion of CB1 is associated with an improvement of hepatic fibrosis and steatosis, and deletion of CB2 results in increased collagen deposition, steatosis, and enhanced inflammation.

CB1 antagonism has also demonstrated vascular effects in patients with cirrhosis, causing an increase in arterial pressure and vascular resistance as well as a decrease in mesenteric blood flow and portal pressure, thereby preventing ascites. In mice with hepatic encephalopathy, CB1 blockade and activation of CB2 demonstrated improved neurologic score and cognitive function.

Endocannabinoids, themselves also have mechanistic roles in cirrhosis. Arachidonoyl ethanolamide (AEA) exhibits antifibrogenic properties by inhibition of HSC proliferation and induction of necrotic death. AEA induces mesenteric vasodilation and hypotension via CB1 induction. 2-arachidonoyl glycerol (2-AG) is a fibrogenic mediator independent of CB receptors, but in higher doses induces apoptosis of HSCs, which may actually show antifibrotic properties. 2-AG has also demonstrated growth-inhibitory and cytotoxic effects.

The exocannabinoid, THC, suppresses proliferation of hepatic myofibroblasts and stellate cells and induces apoptosis, which may reveal antifibrotic and hepatoprotective mechanisms. Thus, several components of the endocannabinoid system have therapeutic potential in cirrhosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29890719

http://www.mdpi.com/2305-6320/5/2/52

The importance of 15-lipoxygenase inhibitors in cancer treatment.

Cancer and Metastasis Reviews

“Cancer-targeted therapy is an expanding and successful approach in treatment of many types of cancers. One of the main categories of targeted therapy is use of small molecule inhibitors. 15-Lipoxygenase (15-LOX) is an enzyme which reacts with polyunsaturated fatty acids and produces metabolites that are implicated in many important human diseases, such as cancer.

Considering the role of 15-LOX (mainly 15-LOX-1) in the progression of some cancers, the discovery of 15-LOX inhibitors could potentially lead to development of novel cancer therapeutics and it can be claimed that 15-LOX inhibitors might be suitable as chemotherapy agents in the near future.

This article reviews relevant publications on 15-LOX inhibitors with focus on their anticancer activities in vitro and in vivo. Many 15-LOX inhibitors have been reported for which separate studies have shown their anticancer activities. This review paves the way to further explore the mechanism of their antiproliferative effects via 15-LOX inhibition.”

“Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor”  http://dmd.aspetjournals.org/content/37/8/1733.long

“Δ9-tetrahydrocannabinol and its major metabolite Δ9-tetrahydrocannabinol-11-oic acid as 15-lipoxygenase inhibitors.”  https://www.ncbi.nlm.nih.gov/pubmed/20891010

Neural correlates of interactions between cannabidiol and Δ(9) -tetrahydrocannabinol in mice: implications for medical cannabis.

BPS (Pharm)

“It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ(9) -tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC.

The aim of this study was to investigate whether CBD modulated the functional effects and c-Fos expression induced by THC, using a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols.

These data confirm that CBD modulated the pharmacological actions of THC and provide new information regarding brain regions involved in the interaction between CBD and THC.”

https://www.ncbi.nlm.nih.gov/pubmed/26377899

“A number of studies now support the view that cannabidiol (CBD) may reduce the negative psychotropic effects of THC while enhancing its positive therapeutic actions. Our results are consistent with the notion that cannabis plant strains that contain THC and CBD at 1:1 ratios may be preferable to street cannabis for medicinal applications because they maximize therapeutic efficacy while minimizing the adverse effects of THC.”  https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13333

Reinforcing effects of opioid/cannabinoid mixtures in rhesus monkeys responding under a food/drug choice procedure.

Psychopharmacology

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance the antinociceptive potency of mu opioid receptor agonists such as morphine, indicating that opioid/cannabinoid mixtures might be effective for treating pain. However, such enhancement will be beneficial only if cannabinoids do not also enhance adverse effects of opioids, including those related to abuse.

In rhesus monkeys, cannabinoids fail to enhance and often decrease self-administration of the mu opioid receptor agonist heroin, suggesting that opioid/cannabinoid mixtures do not have greater reinforcing effects (abuse potential) compared with opioids alone. Previous studies on the self-administration of opioid/cannabinoid mixtures used single-response procedures, which do not easily differentiate changes in reinforcing effects from other effects (e.g., rate decreasing).

CONCLUSION:

Overall, these results extend previous studies to include choice behavior and show that cannabinoids do not substantially enhance the reinforcing effects of mu opioid receptor agonists.”

Effect of tetrahydrocannabinol:cannabidiol oromucosal spray on activities of daily living in multiple sclerosis patients with resistant spasticity: a retrospective, observational study.

 

“To examine evolution in activities of daily living (ADL) in patients with multiple sclerosis spasticity during long-term use of tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray.

Functional impairment was assessed retrospectively (prior to start of treatment) and at the present moment using a 16-item ADL survey; results were compared. A control group without add-on THC:CBD oromucosal spray was included to investigate possible recall bias.

RESULTS:

ADL was maintained or slightly improved with THC:CBD oromucosal spray across treatment time (mean 31.9 months) including significant improvement in ‘standing up’ (p < 0.05) and trends in other items. Significant improvements (p < 0.01) with THC:CBD oromucosal spray were observed in several multiple sclerosis spasticity-related symptoms. Overall, 96.9% of patients using THC:CBD oromucosal spray had a positive global impression of change during treatment.

CONCLUSION:

In this pilot study, THC:CBD oromucosal spray maintained or improved aspects of daily functioning. Further study in a larger trial is warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/29851356

https://www.futuremedicine.com/doi/10.2217/nmt-2017-0055

∆9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer.

Journal Cover

“Limited therapeutic interventions are clinically available for treating aggressive endometrial cancer (EC). Therefore, effective therapies are urgently required.

Therefore, the present study investigated the role of ∆9-tetrahydrocannabinol (THC), which is reported to impact proliferative and migratory activities during impairment of cancer progression.

In the present study, cell migration in response to THC was measured using transwell assays. Using western blot analysis, the levels of cannabinoid receptors in EC tissues were detected and pathways leading to the inhibition of cell migration by THC on human EC cells were determined.

Results suggested that cannabinoid receptors were highly expressed in EC tissues.

Furthermore, THC inhibited EC cell viability and motility by inhibiting epithelial-mesenchymal transition (EMT) and downregulating matrix metalloproteinase-9 (MMP-9) gene expression in aggressive human EC cells.

The results have the potential to promote the development of novel compounds for the treatment of EC metastasis. The present findings suggest that THC may inhibit human EC cell migration through regulating EMT and MMP-9 pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/29805589

https://www.spandidos-publications.com/10.3892/ol.2018.8407

Ventilatory-depressant effects of opioids alone and in combination with cannabinoids in rhesus monkeys.

 Cover image

“Pain is a serious health problem that is commonly treated with opioids, although the doses of opioids needed to treat pain are often similar to those that decrease respiration. Combining opioids with drugs that relieve pain through non-opioid mechanisms can decrease the doses of opioids needed for analgesia, resulting in an improved therapeutic window, but only if the doses of opioids that decrease respiration are not similarly decreased. Using small doses of opioids to treat pain has the potential to reduce the number of overdoses and deaths.

This study investigated whether the cannabinoid receptor agonists Δ9-tetrahydrocannabinol (Δ9-THC) and CP 55,940 modify the ventilatory-depressant effects of morphine and fentanyl in three monkeys.

In summary, cannabinoid receptor agonists, which increase the potency of opioids to produce antinociception, did not increase their potency to depress ventilation. Thus, the therapeutic window is greater for opioids when they are combined with cannabinoid receptor agonists, indicating a possible advantage for these drug mixtures in treating pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29807027

https://www.sciencedirect.com/science/article/pii/S0014299918303108

Randomised Controlled Trial (RCT) of cannabinoid replacement therapy (Nabiximols) for the management of treatment-resistant cannabis dependent patients: a study protocol.

Image result for bmc psychiatry

“The cannabis extract nabiximols (Sativex®) effectively supresses withdrawal symptoms and cravings in treatment resistant cannabis dependent individuals, who have high relapse rates following conventional withdrawal treatments.

This study examines the efficacy, safety and cost-effectiveness of longer-term nabiximols treatment for outpatient cannabis dependent patients who have not responded to previous conventional treatment approaches.

This is the first outpatient community-based randomised controlled study of nabiximols as an agonist replacement medication for treating cannabis dependence, targeting individuals who have not previously responded to conventional treatment approaches. The study and treatment design is modelled upon an earlier study with this population and more generally on other agonist replacement treatments (e.g. nicotine, opioids).”

https://www.ncbi.nlm.nih.gov/pubmed/29776349

“There is a need for more effective treatment approaches for cannabis dependent patients who are unable to discontinue their illicit use through psychosocial interventions alone. Longer-term agonist replacement treatment approaches rather than acute withdrawal management are likely to be more effective, with the combination of THC:CBD nabiximols preparation being potentially advantageous over synthetic THC analogues. This is the first large-scale outpatient RCT of nabiximols for this population, and has required the development of clinical and research methods specific to agonist treatment with a plant-derived cannabinoid formulation, building upon clinical research models previously used in opioid agonist treatment approaches.”

https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-018-1682-2

Sativex® as Add-on therapy Vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial.

Publication Cover

“Purpose/aim: To evaluate the efficacy of tetrahydrocannabinol [THC]:cannabidiol [CBD] oromucosal spray (Sativex®) as add-on therapy to optimized standard antispasticity treatment in patients with moderate to severe multiple sclerosis (MS) spasticity.

RESULTS:

Of 191 patients who entered Phase A, 106 were randomised in Phase B to receive add-on THC:CBD spray (n = 53) or placebo (n = 53). The proportion of clinically-relevant responders after 12 weeks (≥ 30% NRS improvement; primary efficacy endpoint) was significantly greater with THC:CBD spray than placebo (77.4 vs 32.1%; P < 0.0001). Compared with placebo, THC:CBD spray also significantly improved key secondary endpoints: changes in mean spasticity NRS (P < 0.0001), mean pain NRS (P = 0.0013), and mean modified Ashworth’s scale (P = 0.0007) scores from Phase B baseline to week 12. Adverse events, when present, were mild/moderate and without new safety concerns.

CONCLUSIONS:

Add-on THC:CBD oromucosal spray provided better and clinically relevant improvement of resistant MS spasticity compared with adjusting first-line antispasticity medication alone.”

https://www.ncbi.nlm.nih.gov/pubmed/29792372

https://www.tandfonline.com/doi/abs/10.1080/00207454.2018.1481066