The Impact of Δ9-THC on the Psychological Symptoms of Anorexia Nervosa: A Pilot Study.

 Image result for Isr J Psychiatry Relat Sci.

“Δ9-Tetrahydrocannabinol (Δ9-THC) is the active compound of Cannabis sativa with appetite stimulating properties.

This study evaluated the effect of low doses of oral Δ9-THC on self-reported symptoms of patients suffering from chronic anorexia nervosa (AN).

The primary outcome was improvement in the way patients perceived their eating behavior.

Significant improvements were found in self reported body care, sense of ineffectiveness, asceticism and depression. There were no significant changes in BMI.

Δ9-THC may be an effective component in treating the psychological symptoms of AN.”

https://www.ncbi.nlm.nih.gov/pubmed/29735812

Antinociceptive Synergy between 9 -Tetrahydrocannabinol and Opioids after Oral Administration

Image result for the journal of pharmacology and experimental therapeutics

“Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia

The analgesic effects of opioids, such as morphine and codeine, in mice are enhanced by oral administration of the cannabinoid 9 -tetrahydrocannabinol (9 -THC).

These findings suggest that the use of a low-dose combination of analgesics is a valid and effective approach for the treatment of pain and necessitates further study.

In summary, we have observed that 9 -THC enhances the antinociceptive effects of morphine and codeine in a synergistic fashion. This is the first report of a true synergistic interaction between oral 9 -THC and morphine or codeine, since previous studies have only examined one-dose combinations.

Much more work needs to be done to elucidate the mechanisms by which cannabinoids and opioids interact to produce analgesia. However, the implication that a combination of drugs may be more effective than either drug alone, and at the same time possibly reduce the occurrence of side effects, should provoke further study on analgesic drug interactions.”

http://jpet.aspetjournals.org/content/jpet/304/3/1010.full.pdf

http://healthdocbox.com/Substance_Abuse/71109245-Antinociceptive-synergy-between-9-tetrahydrocannabinol-and-opioids-after-oral-administration.html

Synergistic interactions of endogenous opioids and cannabinoid systems.

 Brain Research

“Cannabinoids and opioids are distinct drug classes historically used in combination to treat pain. Delta(9)-THC, an active constituent in marijuana, releases endogenous dynorphin A and leucine enkephalin in the production of analgesia.

The endocannabinoid, anandamide (AEA), fails to release dynorphin A. The synthetic cannabinoid, CP55,940, releases dynorphin B. Neither AEA nor CP55,940 enhances morphine analgesia. The CB1 antagonist, SR141716A, differentially blocks Delta(9)-THC versus AEA. Tolerance to Delta(9)-THC, but not AEA, involves a decrease in the release of dynorphin A.

Our preclinical studies indicate that Delta(9)-THC and morphine can be useful in low dose combination as an analgesic. Such is not observed with AEA or CP55,940.

We hypothesize the existence of a new CB receptor differentially linked to endogenous opioid systems based upon data showing the stereoselectivity of endogenous opioid release. Such a receptor, due to the release of endogenous opioids, may have significant impact upon the clinical development of cannabinoid/opioid combinations for the treatment of a variety of types of pain in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/10612710

https://www.sciencedirect.com/science/article/pii/S0006899399019083?via%3Dihub

Synergistic interactions between cannabinoid and opioid analgesics.

Life Sciences

“Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects.

Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models.

In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception.

A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.”

Interaction of the cannabinoid and opioid systems in the modulation of nociception

Publication Cover

“Cannabinoids and opioids produce antinociceptive synergy.

Cannabinoids such as Δ-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone.

Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals. Therefore, it is logical to look at interactions of these two systems in the modulation of both acute and chronic pain.

This review summarizes the data indicating that with cannabinoid/opioid therapy one may be able to produce long-term antinociceptive effects at doses devoid of substantial side effects, while preventing the neuronal biochemical changes that accompany tolerance.

The clinical utility of modulators of the endocannabinoid system as a potential mimic for THC-like drugs in analgesia and tolerance-sparing effects of opioids is a critical future direction also addressed in the review.”

https://www.tandfonline.com/doi/abs/10.1080/09540260902782794

Pharmacotherapeutic considerations for use of cannabinoids to relieve pain in patients with malignant diseases.

 

“The aim of this review was to assess the efficacy of cannabis preparations for relieving pain in patients with malignant diseases, through a systematic review of randomized controlled trials (RCTs), which were predominantly double-blind trials that compared cannabis preparation to a placebo.

RESULTS:

Fifteen of the 18 trials demonstrated a significant analgesic effect of cannabinoids as compared to placebo. The most commonly reported adverse effects were generally well tolerated, mild to moderate. The main side effects were drowsiness, nausea, vomiting and dry mouth. There is evidence that cannabinoids are safe and modestly effective in neuropathic pain and also for relieving pain in patients with malignant diseases. The proportion of “responders” (patients who at the end of 2 weeks of treatment reported ≥30% reduction in pain intensity on a scale of 0-10, which is considered to be clinically important) was 43% in comparison with placebo (21%).

CONCLUSION:

The target dose for relieving pain in patients with malignant diseases is most likely about 10 actuations per day, which is about 27 mg tetrahydrocannabinol (THC) and 25 mg cannabidiol (CBD), and the highest approved recommended dose is 12 actuations per day (32 mg THC/30 mg CBD). Further large studies of cannabinoids in homogeneous populations are required.”

https://www.ncbi.nlm.nih.gov/pubmed/29719417

https://www.dovepress.com/pharmacotherapeutic-considerations-for-use-of-cannabinoids-to-relieve–peer-reviewed-article-JPR

Cannabis, from Plant to Pill.

British Journal of Clinical Pharmacology banner

“The therapeutic application of Cannabis is attracting substantial public and clinical interest. The Cannabis plant has been described as a veritable ‘treasure trove’, producing more than a hundred different cannabinoids, although the focus to date has been on the psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD).

Other numerous secondary metabolites of Cannabis the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are hypothesised to contribute synergistically to their therapeutic benefits, an attribute that has been described as the ‘entourage effect’.

The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and standardised growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence (flos) is the source.

Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites can be blended to provide a specific ratio of major cannabinoids (THC:CBD) or individual cannabinoids can be isolated, purified and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of Cannabis possessing elevated levels of specific cannabinoids or other secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/29701252

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.13618

The effect of high-dose dronabinol (oral THC) maintenance on cannabis self-administration.

Drug and Alcohol Dependence Home

“There is a clear need for advancing the treatment of cannabis use disorders. Prior research has demonstrated that dronabinol (oral THC) can dose-dependently suppress cannabis withdrawal and reduce the acute effects of smoked cannabis.

The present study was conducted to evaluate whether high-dose dronabinol could reduce cannabis self-administration among daily users.

CONCLUSIONS:

Chronic dronabinol dosing can reduce cannabis self-administration in daily cannabis users and suppress withdrawal symptoms. Cannabinoid agonist medications should continue to be explored for therapeutic utility in the treatment of cannabis use disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29689485

https://www.drugandalcoholdependence.com/article/S0376-8716(18)30184-4/fulltext

[The impact of cannabinoids on the endocrine system].

 

Related image

“Cannabinoids are naturally occurring compounds, derivatives of Indian hemp, in which tetrahydrocannabinol (THC) is the most important. Marijuana, hashish and hash oil are among those most commonly used in the group.

Cannabinoids (marjhuana and hashish) have been used throughout recorded history as effective drugs in treating various diseases and conditions such as: malaria, hypertension, constipation, bronchial asthma, rheumatic pains, and as natural pain relief in labour and joint pains.

Marijuana acts through cannabinoid receptors CB 1 and CB2. Both receptors inhibit cAMP accummulation (through Gi/o proteins) and stimulate mitrogen- activated protein kinase. CB1 rceptors are located in CNS and in adipose tissue, digestive tract, muscles, heart, lungs, liver, kidneys, gonads, prostate gland and other peripheral tissues. CB2 cannabinoid receptors are located in the peripheral nervous system (at the ends of peripheral nerves), and on the surfaces of the cells of the immunological system.

The discovery of endogenous cannabinoids has contributed to a better understanding of their role in the regulation of the intake of food, energetic homeostasis and their significant influence on the endocrine system.”

Palatability and oral cavity tolerability of THC:CBD oromucosal spray and possible improvement measures in multiple sclerosis patients with resistant spasticity: a pilot study.

Future Medicine Logo

“Complaints about Δ9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (Sativex®; GW Pharma Ltd, Sailsbury, UK) in the management of multiple sclerosis spasticity include unpleasant taste and oral mucosal anomalies.

This pilot study assessed the use of sugar-free chewing gum and/or a refrigerated bottle of THC:CBD oromucosal spray to mitigate these effects.

RESULTS:

Taste perception in patients receiving chewing gum ± cold bottle intervention (Groups A and C combined) was significantly (p = 0.0001) improved from baseline to week 4 while maintaining spasticity control.

CONCLUSION:

Patient comfort, satisfaction and treatment adherence may benefit from these interventions.”

https://www.ncbi.nlm.nih.gov/pubmed/29683408

https://www.futuremedicine.com/doi/10.2217/nmt-2017-0056