Effect of combined doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea using rat (Sprague- Dawley) models of conditioned gaping.

“Δ9-Tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) found in cannabis both reduce the distressing symptom of nausea…

Combined subthreshold doses of THC  and CBDA reduced acute nausea.

Higher doses of THC or CBDA alone, as well as these combined doses also reduced acute nausea.

Combined subthreshold doses of THC:CBDA are particularly effective as a treatment for acute nausea. At higher doses, CBDA may attenuate THC-induced interference with learning.”

http://www.ncbi.nlm.nih.gov/pubmed/26381155

Neural correlates of cannabidiol and Δ9-tetrahydrocannabinol interactions in mice: implications for medical cannabis.

“It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9-tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC.

The aim of this study is to investigate whether CBD modulates THC-induced functional effects and c-Fos expression in a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols.

These data re-affirm that CBD modulates the pharmacological actions of THC and provide information regarding brain regions involved in the interaction between CBD and THC.”

http://www.ncbi.nlm.nih.gov/pubmed/26377899

Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up

Logo of jnnpsyc

“To test the effectiveness and long term safety of cannabinoids in multiple sclerosis (MS), in a follow up to the main Cannabinoids in Multiple Sclerosis (CAMS) study.

There was suggestive evidence for treatment effects of Δ9-THC on some aspects of disability.

There were no major safety concerns.

Overall, patients felt that these drugs were helpful in treating their disease.

These data provide limited evidence for a longer term treatment effect of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1739436/

The Genetic Structure of Marijuana and Hemp.

“Despite its cultivation as a source of food, fibre and medicine, and its global status as the most used illicit drug, the genus Cannabis has an inconclusive taxonomic organization and evolutionary history.

Drug types of Cannabis (marijuana), which contain high amounts of the psychoactivecannabinoid Δ9-tetrahydrocannabinol (THC), are used for medical purposes and as a recreational drug.

Hemp types are grown for the production of seed and fibre, and contain low amounts of THC.

Two species or gene pools (C. sativa and C. indica) are widely used in describing the pedigree or appearance of cultivated Cannabis plants.

Using 14,031 single-nucleotide polymorphisms (SNPs) genotyped in 81 marijuana and 43 hemp samples, we show that marijuana and hemp are significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production.

We find a moderate correlation between the genetic structure of marijuana strains and their reported C. sativa and C. indica ancestry and show that marijuana strain names often do not reflect a meaningful genetic identity.

We also provide evidence that hemp is genetically more similar to C. indica type marijuana than to C. sativa strains.”

http://www.ncbi.nlm.nih.gov/pubmed/26308334

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133292

Pregnenolone can protect the brain from cannabis intoxication.

“Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated.

The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor.

Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC.

This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.

These data indicate that THC increases pregnenolone through activation of the CB1 receptor…

In conclusion, this new understanding of the role of pregnenolone has the potential to generate new therapies for cannabis dependence.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/

Marijuana Use in Epilepsy: The Myth and the Reality.

“Marijuana has been utilized as a medicinal plant to treat a variety of conditions for nearly five millennia.

Over the past few years, there has been an unprecedented interest in using cannabis extracts to treat epilepsy, spurred on by a few refractory pediatric cases featured in the media that had an almost miraculous response to cannabidiol-enriched marijuana extracts.

This review attempts to answer the most important questions a clinician may have regarding the use of marijuana in epilepsy. First, we review the preclinical and human evidences for the anticonvulsant properties of the different cannabinoids, mainly tetrahydrocannabinol (THC) and cannabidiol (CBD).

Then, we explore the safety data from animal and human studies. Lastly, we attempt to reconcile the controversy regarding physicians’ and patients’ opinions about whether the available evidence is sufficient to recommend the use of marijuana to treat epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26299273

http://www.thctotalhealthcare.com/category/epilepsy-2/

Dissecting the cannabinergic control of behavior: The where matters.

“The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Δ9 -tetrahydrocannabinol (THC).

This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions.

This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R).

Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria).

Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons).

Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine.”

http://www.ncbi.nlm.nih.gov/pubmed/26260530

Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury.

“Ischemia/reperfusion (I/R) injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts.

Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury.

Delta-9-tetrahydrocannabinol (THC), a cannabinoid agonist, is the active components of marijuana.

In this study we examined the role of ultralow dose THC (0.002mg/kg) in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults.

CONCLUSION:

A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury.

THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.”

http://www.ncbi.nlm.nih.gov/pubmed/26202357

Δ9-Tetrahydrocannabinolicacid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

“Δ9-tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound.

Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand.

The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant.

Δ9-Tetrahydrocannabinolicacid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ9-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC.

In conclusion, production of THCAS in Pichia pastoris MutS KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.”

http://www.ncbi.nlm.nih.gov/pubmed/26197418

The dual effects of delta(9)-tetrahydrocannabinol on cholangiocarcinoma cells: anti-invasion activity at low concentration and apoptosis induction at high concentration.

“Currently, only gemcitabine plus platinum demonstrates the considerable activity for cholangiocarcinoma.

The anticancer effect of Delta (9)-tetrahydrocannabinol (THC), the principal active component of cannabinoids has been demonstrated in various kinds of cancers.

We therefore evaluate the antitumor effects of THC on cholangiocarcinoma cells.

Both cholangiocarcinoma cell lines and surgical specimens from cholangiocarcinoma patients expressed cannabinoid receptors.

THC inhibited cell proliferation, migration and invasion, and induced cell apoptosis.

THC also decreased actin polymerization and reduced tumor cell survival in anoikis assay. pMEK1/2 and pAkt demonstrated the lower extent than untreated cells.

Consequently, THC is potentially used to retard cholangiocarcinoma cell growth and metastasis.” http://www.ncbi.nlm.nih.gov/pubmed/19916793 

“Cholangiocarcinoma is an epithelial cell malignancy arising from varying locations within the biliary tree showing markers of cholangiocyte differentiation. The most contemporary classification based on anatomical location includes intrahepatic, perihilar, and distal cholangiocarcinoma… Understanding of cholangiocarcinoma biology, the oncogenic landscape of this disease, and its complex interaction with the tumour microenvironment could lead to optimum therapies with improvement in patient survival… Hopefully, personalised or precision medicine is in the near future for the treatment of cholangiocarcinoma” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069226/

 “Cholangiocarcinomas (bile duct cancers) are a heterogeneous group of malignancies arising from the epithelial cells of the intrahepatic, perihilar and extrahepatic bile ducts.”   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731530/

“Cholangiocarcinoma (CC) is the second most common primary hepatic malignancy after hepatocellular cancer. CC accounts for approximately 10%-25% of all hepatobiliary malignancies. CC is a rare malignancy in Western countries, but more common in Asia. There are several established risk factors for CC, including parasitic infections, primary sclerosing cholangitis, biliary-duct cysts, hepatolithiasis, and toxins. Other less-established potential risk factors include inflammatory bowel disease, hepatitis C virus, hepatitis B virus, cirrhosis, diabetes, obesity, alcohol drinking, tobacco smoking, and host genetic polymorphisms.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125451/

“Cholangiocarcinoma is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers.”  http://www.ncbi.nlm.nih.gov/pubmed/24895231

http://www.thctotalhealthcare.com/category/cholangiocarcinoma/