Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats.

“A series of experiments evaluated the potential of psychoactive cannabinoid agonists, delta-9-THC and HU-210, and non-psychoactive cannabinoids, Cannabidiol (CBD) and its dimethylheptyl homolog (CBD-dmh), to interfere with the establishment and the expression of conditioned gaping in rats.

All agents attenuated both the establishment and the expression of conditioned gaping.

Furthermore, the CB1 antagonist, SR-141716, reversed the suppressive effect of HU-210 on conditioned gaping.

Finally, SR-141716 potentiated lithium-induced conditioned gaping, suggesting that the endogenous cannabinoid system plays a role in the control of nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/14527182

http://www.thctotalhealthcare.com/category/nauseavomiting/

Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea.

“Marijuana has been reported to suppress nausea produced by chemotherapy treatment in human cancer patients.

… there is abundant evidence that cannabinoid agonists attenuate vomiting in emetic species…

The present experiments evaluated the potential of low doses of the cannabinoid agonists, delta-9-tetrahydrocannabinol (THC; 0.5 mg/kg, i.p.), and HU-210 (0.001 mg/kg and 0.01 mg/kg, i.p.), and the CB(1) antagonist SR-141716A in modulating the establishment and the expression of lithium-induced conditioned rejection reactions in rats.

These results indicate that the establishment and the expression of lithium-induced conditioned rejection reactions are suppressed by pretreatment with cannabinoid agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12528012

http://www.thctotalhealthcare.com/category/nauseavomiting/

Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception.

Logo of nihpa

“Cannabis has been used for thousands of years as a therapeutic agent for pain relief, as well as for recreational purposes.

Delta-9-Tetrahydrocannabinol (Δ9-THC)… produces antinociceptive effects in a wide range of preclinical assays of pain.

Considerable preclinical research has demonstrated the efficacy of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids.

Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Delta(9)-THC.

These results suggest that various constituents of this plant may interact in a complex manner to modulate pain.

The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model…

Importantly, the antinociceptive effects of Delta(9)-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching.

These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Delta(9)-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Delta(9)-THC.

The results obtained in the present study are consistent with the view that Δ9-THC is the major phytocannabinoid present in marijuana that produces antinociception in the acetic acid abdominal stretching test.

…these results suggest that there is potential to develop medications containing various concentrations of specific phytocannabinoids to optimize therapeutic effects (e.g., antinociception) and minimize psychomimetic effects.

In sum, the results of the present study further support the notion that Δ9-THC is the predominant constituent of marijuana that is responsible for eliciting antinociceptive effects and indicate that CB1 receptors play a predominant role in mediating these effects.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/

http://www.thctotalhealthcare.com/category/pain-2/

Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol.

“Approximately 25 % of HIV patients use marijuana for its putative therapeutic benefit…

Previously, a surrogate in vitro mouse model was established, which induced CD8+ T cell proliferation and gp120-specific IFNγ production. ∆9-Tetrahydrocannabinol (THC), the predominant psychoactive compound in marijuana, suppressed or enhanced the responses depending on the magnitude of cellular activation.

The purpose of the current study was to investigate whether THC produced similar effects in vivo and therefore a mouse model to induce HIVgp120-specific immune responses was established…

Collectively, our findings demonstrate that under certain conditions, THC enhances HIV antigen-specific immune responses, which occurs through CB1/CB2-dependent and -independent mechanisms.”

http://www.ncbi.nlm.nih.gov/pubmed/25900076

http://www.thctotalhealthcare.com/category/hivaids/

Cannabinoids Inhibit T-cells via Cannabinoid Receptor 2 in an in vitro Assay for Graft Rejection, the Mixed Lymphocyte Reaction

Logo of nihpa

 

“Cannabinoids are known to have anti-inflammatory and immunomodulatory properties.

Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes.

This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion…

Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

Cannabinoids were reported to have effects on immune responses as early as the 1970s, but the basis for this activity was not understood until the cannabinoid receptors were cloned

Ideally, the anatomically disparate expression of CB1 and CB2 would allow for the use of compounds selective for CB2, and thus eliminate the unwanted psychoactive effects from CB1 activation, while maintaining the anti-inflammatory and immunosuppressive properties.

CB2-selective cannabinoids have been proposed as possible candidates to block graft rejection.

The results presented in this paper show that Δ9-THC, a mixed CB1/CB2 agonist, and two CB2-selective agonists can inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ and skin graft rejection.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864984/

Gonadal hormones do not alter the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol in adult rats.

“The purpose of this study was to determine whether sex differences in the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) are due to activational effects of gonadal hormones…

These results suggest that greater antinociceptive tolerance in females, which occurred despite females receiving 40% less THC than males, is not due to activational effects of gonadal hormones.”

A sativex-like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis.

“Sativex® is an oromucosal spray, containing equivalent amounts of Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD)-botanical drug substance (BDS), and which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS).

In this study, we investigated whether Sativex® may also serve as a disease-modifying agent in the Theiler’s murine encephalomyelitis virus induced demyelinating disease model of MS…

The data support the therapeutic potential of Sativex® to slow MS progression and its relevance in CNS repair.”

http://www.ncbi.nlm.nih.gov/pubmed/25857324

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

 

Reduction by Δ9-tetrahydrocannabinol in the blood pressure of hypertensive rats bearing regenerated adrenal glands

Image result for THC

“A suspension of (−)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) was administered daily for one week by i.p. injection to female rats showing the syndrome of adrenal regeneration hypertension (ARH)…

The findings indicate that Δ9-THC, at a moderate dose for the rat, is capable of lowering the blood pressure in rats suffering from adrenal regeneration hypertension and that chronic administration of Δ9-THC does not appear to stimulate the pituitary-adrenal axis, in contrast to reported effects of acute administration.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1776093/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Differential effect of cannabinol and cannabidiol on THC-induced responses during abstinence in morphine-dependent rats.

“The same dose of cannabinol (CBN) or cannabidiol (CBD) further increased the attenuation of precipitated abstinence signs observed in morphine-dependent rats that also received an acute dose of delta 9-THC. By contrast, rotational behavior (turning), which is observed concomitantly in THC-treated rats during morphine abstinence, was not increased by CBN, but was potentiated by CBD.

These data illustrate differences between psychoinactive cannabinoids in their interaction with delta 9-THC that might be relevant to possible clinical use of Cannabis in narcotic detoxification.”

Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

“In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse.

This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/25801289

http://www.thctotalhealthcare.com/category/schizophrenia/