Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders.

Abstract

“Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to psychiatry because of their selective presence within the CNS and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable focus is the ability of CB1Rs to modulate the effects of the drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to modulate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, rimonabant, in 1994, and subsequently of other CB1R antagonists, there has been a rapid expansion of research investigating their ability to modulate the effects of the drugs of abuse. This review highlights some of the preclinical and clinical studies that have examined the effects of CB1R antagonists under conditions potentially predictive of their therapeutic efficacy as treatments for drug abuse disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/19367507

Endocannabinoid system involvement in brain reward processes related to drug abuse.

“Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.”

“The endogenous cannabinoid is a recently discovered system that appears to play an important and pervasive role in many types of drug abuse and dependence. Endogenous cannabinoids are neuromodulators that are involved in the signalling of rewarding events and can produce reinforcing and rewarding effects in experimental animals, as they do in humans. Endogenous cannabinoids can also activate other brain systems involved in reward signalling, can modulate the reinforcing and rewarding effects of other non-cannabinoid abused drugs, and are released by drugs of abuse in brain areas involved in reward and reinforcement processes. Accumulating evidence points to the endocannabinoid system as a major target for the development of new pharmacological agents for the treatment of many different types of drug abuse and dependence.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189556/