The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids.

ijms-logo“Epilepsy is a neurological disorder that affects approximately 50 million people worldwide.

There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown.

Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies.

We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment.

There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31810321

https://www.mdpi.com/1422-0067/20/23/6079

Cannabinoids and the Microbiota-Gut-Brain-Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders.

Alcoholism: Clinical and Experimental Research banner“The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD).

In particular, the non-psychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD.

There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain-axis (MGBA).

Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA.

Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control.

Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA.

This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.”

https://www.ncbi.nlm.nih.gov/pubmed/31803950

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14256

Cannabinoids: A Guide for Use in the World of Gastrointestinal Disease.

Image result for ovid journal“Cannabinoids have been known as the primary component of cannabis for decades, but the characterization of the endocannabinoid system (ECS) in the 1990s opened the doors for cannabis’ use in modern medicine.

The 2 main receptors of this system, cannabinoid receptors 1 and 2, are found on cells of various tissues, with significant expression in the gastrointestinal (GI) tract. The characterization of the ECS also heralded the understanding of endocannabinoids, naturally occurring compounds synthesized in the human body.

Although research on the effects of both endogenous and exogenous cannabinoids has been slow due to the complicated legal history of cannabis, discoveries of cannabinoids‘ treatment potential have been found in various fields of medicine, including the GI world.

Medical cannabis has since been offered as a treatment for a myriad of conditions and malignancies, including cancer, human immunodeficiency virus/acquired immunodeficiency syndrome, multiple sclerosis, chronic pain, nausea, posttraumatic stress disorder, amyotrophic lateral sclerosis, cachexia, glaucoma, and epilepsy.

This article hopes to create an overview of current research on cannabinoids and the ECS, detail the potential advantages and pitfalls of their use in GI diseases, and explore possible future developments in this field.”

https://www.ncbi.nlm.nih.gov/pubmed/31789770

https://insights.ovid.com/crossref?an=00004836-900000000-97668

The role of the endocannabinoid system in aetiopathogenesis of endometriosis: A potential therapeutic target.

European Journal of Obstetrics and Gynecology Home“Endometriosis affects a large proportion of women during their reproductive years and is associated with pain and infertility, also affecting psychological wellbeing and quality of life. The pathogenesis of the disease remains unclear, although it is believed to be multifactorial.

The endocannabinoid system (ECS) consists of a number of ligands, receptors and enzymes, and has gained interests in endometriosis research. This review aims to summarise all available evidence reporting the roles of the ECS in endometriosis.

A literature search of the PubMed, EMBASE, and Web of Science electronic medical databases was performed. Original and review articles published in peer-reviewed journals were included. No publication date or publication status restrictions were imposed.

Significant differences in the concentrations and expressions of the components of the ECS were reported in the eutopic and ectopic endometrium, and the systemic circulation of women with endometriosis compared to controls. Endometriosis appears to be associated with downregulation of CB1 receptors and upregulation of TRPV1 receptors.

The role of CB1 and progesterone in anti-inflammatory action and the role of TRPV1 in inflammation and pain are of particular interests. Furthermore, the ECS has been reported to be involved in processes relevant to endometriosis, including cell migration, cell proliferation, apoptosis, inflammation, and interacts with sex steroid hormones.

The ECS may play a role in disease establishment, progression, and pain in endometriosis. However, reports are based on studies of limited size and there are inconsistencies among the definition of their control groups. There are also conflicting reports regarding precise involvement of the ECS in endometriosis. Future research with larger numbers, strict inclusion and exclusion criteria and detailed clinical information is imperative.”

https://www.ncbi.nlm.nih.gov/pubmed/31785471

https://www.ejog.org/article/S0301-2115(19)30526-3/fulltext

Investigation of the Involvement of the Endocannabinoid System in TENS-induced Antinociception.

“Transcutaneous electrical nerve stimulation (TENS) promotes antinociception by activating the descending pain modulation pathway and consequently releasing endogenous analgesic substances.

In addition, recent studies have shown that the endocannabinoid system controls pain. Thus, the present study investigated the involvement of the endocannabinoid system in TENS-induced antinociception of cancer pain using a cancer pain model induced by intraplantar (i.pl.) injections of Ehrlich tumor cells in male Swiss mice.

These results suggest that low- and high-frequency TENS is effective in controlling cancer pain, and the endocannabinoid system is involved in this effect at both the peripheral and central levels.

Perspective: TENS is a non-pharmacological strategy that may be used to control cancer pain. Identification of a new mechanism involved in its analgesic effect could lead to the development of clinical studies as well as an increase in its application, lessening the need for pharmacological treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/31785404

https://www.jpain.org/article/S1526-5900(19)30868-5/fulltext

The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases.

 ijms-logo“Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/31771129

https://www.mdpi.com/1422-0067/20/23/5875

The curative effect of a cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Publication cover image“As we learn more about the endocannabinoid system (ECS), our understanding and grasp of the system’s ubiquitous presence is expanding. In light of this, there is also a growing body of evidence for the therapeutic potential of ECS modulation in a range of clinical situations. Strategies include for example manipulation of the Cannabinoid 1 (CB1) receptor, mostly in terms of CNS processes, and activation of the Cannabinoid 2 (CB2) receptor as anti-inflammatory target.”

https://www.ncbi.nlm.nih.gov/pubmed/31774568

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12524

Alcohol Binge-Induced Cardiovascular Dysfunction Involves Endocannabinoid-CB1-R Signaling.

 JACC: Basic to Translational Science“Excessive binge alcohol drinking may adversely affect cardiovascular function. In this study we characterize the detailed hemodynamic effects of an acute alcohol binge in mice using multiple approaches and investigate the role of the endocannabinoid-cannabinoid 1 receptor (CB1-R) signaling in these effects. Acute alcohol binge was associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction lasting for several hours and redistribution of circulation. These changes were attenuated by CB1-R antagonist or in CB1-R knockout mice. Our results suggest that a single alcohol binge has profound effects on the cardiovascular system, which involve endocannabinoid-CB1-R signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/31768478

“Alcohol is one of the most frequently used intoxicants in the United States. Binge alcohol drinking is a major contributor of emergency department visits. Binge alcohol drinking may adversely affect cardiovascular function. Here we show that acute alcohol intoxication is associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction and blood redistribution lasting for several hours. The adverse cardiovascular effects of acute alcohol intoxication are attenuated by CB1-R antagonist or in CB1-R knockout mice. A single alcohol binge has profound effect on the cardiovascular system, which involves endocannabinoid-CB1-R signaling.”

https://www.sciencedirect.com/science/article/pii/S2452302X19301755?via%3Dihub

Experimental Cannabinoid 2 Receptor Activation by Phyto-Derived and Synthetic Cannabinoid Ligands in LPS-Induced Interstitial Cystitis in Mice.

molecules-logo“Interstitial cystitis (IC) is a chronic bladder disorder with unclear etiology.

The endocannabinoid system has been identified as a key regulator of immune function, with experimental evidence for the involvement of cannabinoid receptors in bladder inflammation.

This study used intravital microscopy (IVM) and behavioral testing in lipopolysaccharide-induced IC, to investigate the anti-inflammatory analgesic effects of a natural dietary sesquiterpenoid, beta-caryophyllene (BCP), which is present in cannabis among other plants, and has reported agonist actions at the cannabinoid 2 receptor (CB2R).

BCP’s anti-inflammatory actions were compared to the synthetic CB2R-selective cannabinoid, HU308, and to an FDA-approved clinical treatment (dimethyl sulfoxide: DMSO). IVM data revealed that intravesical instillation of BCP and/or HU308 significantly reduces the number of adhering leukocytes in submucosal bladder venules and improves bladder capillary perfusion.

The effects of BCP were found to be comparable to that of the selective CB2R synthetic cannabinoid, HU308, and superior to intravesical DMSO treatment. Oral treatment with BCP was also able to reduce bladder inflammation and significantly reduced mechanical allodynia in experimental IC.

Based on our findings, we believe that CB2R activation may represent a viable therapeutic target for IC, and that drugs that activate CB2R, such as the generally regarded as safe (GRAS) dietary sesquiterpenoid, BCP, may serve as an adjunct and/or alternative treatment option for alleviating symptoms of inflammation and pain in the management of IC.”

https://www.ncbi.nlm.nih.gov/pubmed/31766439

https://www.mdpi.com/1420-3049/24/23/4239

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice.

Publication cover image“The endocannabinoid system (ECS) is comprised of cannabinoid receptors 1 and 2 (CB1R and CB2R), endogenous ligands, and regulatory enzymes, and serves to regulate several important physiological functions throughout the brain and body.

Recent evidence suggests that the ECS may be a promising target for the treatment of epilepsy, including epilepsy subtypes that arise from mutations in the voltage-gated sodium channel SCN1A.

The objective of this study was to explore the effects of modulating CB2R activity on seizure susceptibility.

Our results demonstrate that reduced CB2R activity is associated with increased seizure susceptibility. CB2Rs might therefore provide a therapeutic target for the treatment of some forms of epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31758544

https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16388