Lower circulating endocannabinoid levels in children with autism spectrum disorder.

 Image result for bmc molecular autism

“The endocannabinoid system (ECS) is a major regulator of synaptic plasticity and neuromodulation. Alterations of the ECS have been demonstrated in several animal models of autism spectrum disorder (ASD). In some of these models, activating the ECS rescued the social deficits. Evidence for dysregulations of the ECS in human ASD are emerging, but comprehensive assessments and correlations with disease characteristics have not been reported yet.

METHODS:

Serum levels of the main endocannabinoids, N-arachidonoylethanolamine (AEA or anandamide) and 2-arachidonoylglycerol (2-AG), and their related endogenous compounds, arachidonic acid (AA), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA), were analyzed by liquid chromatography/tandem mass spectrometry in 93 children with ASD (age = 13.1 ± 4.1, range 6-21; 79% boys) and 93 age- and gender-matched neurotypical children (age = 11.8 ± 4.3, range 5.5-21; 79% boys). Results were associated with gender and use of medications, and were correlated with age, BMI, and adaptive functioning of ASD participants as reflected by scores of Autism Diagnostic Observation Schedule (ADOS-2), Vineland Adaptive Behavior Scale-II (VABS-II), and Social Responsiveness Scale-II (SRS-2).

RESULTS:

Children with ASD had lower levels (pmol/mL, mean ± SEM) of AEA (0.722 ± 0.045 vs. 1.252 ± 0.072, P < 0.0001, effect size 0.91), OEA (17.3 ± 0.80 vs. 27.8 ± 1.44, P < 0.0001, effect size 0.94), and PEA (4.93 ± 0.32 vs. 7.15 ± 0.37, P < 0.0001, effect size 0.65), but not AA and 2-AG. Serum levels of AEA, OEA, and PEA were not significantly associated or correlated with age, gender, BMI, medications, and adaptive functioning of ASD participants. In children with ASD, but not in the control group, younger age and lower BMI tended to correlate with lower AEA levels. However, these correlations were not statistically significant after a correction for multiple comparisons.

CONCLUSIONS:

We found lower serum levels of AEA, PEA, and OEA in children with ASD. Further studies are needed to determine whether circulating endocannabinoid levels can be used as stratification biomarkers that identify clinically significant subgroups within the autism spectrum and if they reflect lower endocannabinoid “tone” in the brain, as found in animal models of ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30728928

https://molecularautism.biomedcentral.com/articles/10.1186/s13229-019-0256-6

Cutting Edge: Dysregulated Endocannabinoid-Rheostat for Plasmacytoid Dendritic Cell Activation in a Systemic Lupus Endophenotype.

The Journal of Immunology

“Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by loss of tolerance toward self nuclear Ags. Systemic induction of type I IFNs plays a pivotal role in SLE, a major source of type I IFNs being the plasmacytoid dendritic cells (pDCs). Several genes have been linked with susceptibility to SLE in genome-wide association studies. We aimed at exploring the role of one such gene, α/β-hydrolase domain-containing 6 (ABHD6), in regulation of IFN-α induction in SLE patients. We discovered a regulatory role of ABHD6 in human pDCs through modulating the local abundance of its substrate, the endocannabinoid 2-arachidonyl glycerol (2-AG), and elucidated a hitherto unknown cannabinoid receptor 2 (CB2)-mediated regulatory role of 2-AG on IFN-α induction by pDCs. We also identified an ABHD6High SLE endophenotype wherein reduced local abundance of 2-AG relieves the CB2-mediated steady-state resistive tuning on IFN-α induction by pDCs, thereby contributing to SLE pathogenesis.”

https://www.ncbi.nlm.nih.gov/pubmed/30728209

http://www.jimmunol.org/content/early/2019/02/05/jimmunol.1801521

Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats.

Neurobiology of Disease

“Endocannabinoids (eCBs) and serotonin (5-HT) play a neuromodulatory role in the central nervous system. Both eCBs and 5-HT regulate neuronal excitability and their pharmacological potentiation has been shown to control seizures in pre-clinical and human studies.

Compelling evidence indicates that eCB and 5-HT systems interact to modulate several physiological and pathological brain functions, such as food intake, pain, drug addiction, depression, and anxiety.

Nevertheless, there is no evidence of an eCB/5-HT interaction in experimental and human epilepsies, including status epilepticus (SE). Here, we performed video-EEG recording in behaving rats treated with the pro-convulsant agent pilocarpine (PILO), in order to study the effect of the activation of CB1/5-HT2receptors and their interaction on SE.

Synthetic cannabinoid agonist WIN55,212-2 (WIN) decreased behavioral seizure severity of PILO-induced SE at 2 mg/kg (but not at 1 and 5 mg/kg, i.p.), while 5-HT2B/2C receptor agonist RO60-0175 (RO; 1, 3, 10 mg/kg, i.p.) was devoid of any effect. RO 3 mg/kg was instead capable of potentiating the effect of WIN 2 mg/kg on the Racine scale score.

Surprisingly, neither WIN 2 mg/kg nor RO 3 mg/kg had any effect on the incidence and the intensity of EEG seizures when administered alone. However, WIN+RO co-administration reduced the incidence and the severity of EEG SE and increased the latency to SE onset after PILO injection. WIN+RO effects were blocked by the selective CB1R antagonist AM251 and the 5-HT2BR antagonist RS127445, but not by the 5-HT2CR antagonist SB242084 or the 5-HT2AR antagonist MDL11,939.

These data revealed a synergistic interaction between CB1R/5-HT2BR in the expression of PILO-induced SE.”

https://www.ncbi.nlm.nih.gov/pubmed/30716469

https://www.sciencedirect.com/science/article/pii/S0969996119300336?via%3Dihub

Ketamine induces central antinociception mediated by endogenous cannabinoids and activation of CB1 receptors.

Neuroscience Letters

“The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group.

In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine.

It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoidreceptors.

Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.”

https://www.ncbi.nlm.nih.gov/pubmed/30716423

https://www.sciencedirect.com/science/article/abs/pii/S0304394019300771?via%3Dihub

Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression.

Neurochemistry International“Altered endocannabinoid (eCB) signaling is suggested as an important contributor to the pathophysiology of depression.

In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour.

Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions.

Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30716357

https://www.sciencedirect.com/science/article/abs/pii/S0197018618305151?via%3Dihub

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Cannabinoids and Bone Regeneration.

 Publication Cover“Bone is a complex tissue of the with unique properties such as high strength and regeneration capabilities while carrying out multiple functions. Bone regeneration occurs both in physiological situations (bone turnover) and pathological situations (e.g. fractures), being performed by osteoblasts and osteoclasts. If this process is inadequate, fracture nonunion or aseptic loosening of implants occurs and requires a complex treatment.

Exogenous factors are currently used to increase bone regeneration process when needed, such as bisphosphonates and vitamin D, but limitations do exist. Cannabinoid system has been shown to have positive effects on bone metabolism. Cannabinoids at bone level mainly act on two receptors called CB-1 and CB-2, but GPR55, GPR119, TPRV1, TPRV4 receptors may also be involved. The CB-2 receptors are found in bone cells at higher levels compared to other receptors.

Endocannabinods represented by anandamide and 2-arachidonoylglycerol, can stimulate osteoblast formation, bone formation and osteoclast activity. CB-2 agonists including HU-308, HU-433, JWH133 and JWH015 can stimulate osteoblast proliferation and activity, while CB-2 antagonists such as AM630 and SR144528 can inhibit osteoclast differentiation and function. CB-1 antagonist AM251 has been shown to inhibit osteoclast differentiation and activity, while GPR55 antagonist cannabidiol increases osteoblast activity and decreases osteoclast function.

An optimal correlation of dose, duration, moment of action and affinity can lead to an increased bone regeneration capacity, with important benefits in many pathological situations which involve bone tissue. As adverse reactions of cannabinoids haven’t been described in patients under controlled medication, cannabinoids can represent future treatment for bone regeneration.”

https://www.ncbi.nlm.nih.gov/pubmed/30702341

https://www.tandfonline.com/doi/abs/10.1080/03602532.2019.1574303?journalCode=idmr20

[Endogenous Cannabinoid System of the Brain as the Target for Influences at Neurodegenerate Diseases]

“The review represents the analysis of works about role of endogenous cannabinoid (EC) system in the neuro- degenerate diseases (ND), in which the cellular death and disturbances of neuronal functions of the hippo- campus, neocortex and striatum are observed. Here, the diseases.ofAlzheimer, of Parkinson, of Hangtington, and the temporal lobe epilepsy are considered. In recent years the fundamental role of EC system in regu- lation of neuroexcitability, energy metabolism, inflammatory and many other processes has been opened in ND pathogenesis. It points to possibility of development of therapeutic approaches which use the prepara- tions for activation of EC system. In the review various mechanisms of cellular survival and their reparations provided to EC system during action of pathological factors are stated.”

https://www.ncbi.nlm.nih.gov/pubmed/30695519

Targeting CB1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson’s Disease.

 “Cannabinoid CB1 receptors (CB1R) and the GPR55 receptor are expressed in striatum and are potential targets in the therapy of Parkinson’s disease (PD), one of the most prevalent neurodegenerative diseases in developed countries.

The aim of this paper was to address the potential of ligands acting on those receptors to prevent the action of a neurotoxic agent, MPP+, that specifically affects neurons of the substantia nigra due to uptake via the dopamine DAT transporter.

These results show that neurons expressing heteromers are more resistant to cell death but question the real usefulness of CB1R, GPR55, and their heteromers as targets to afford PD-related neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/30687889

https://link.springer.com/article/10.1007%2Fs12035-019-1495-4

Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome.

Neurobiology of Disease“Intellectual disability is the most limiting hallmark of Down syndrome, for which there is no gold-standard clinical treatment yet.

The endocannabinoid system is a widespread neuromodulatory system involved in multiple functions including learning and memory processes.

Our results identify CB1R as a novel druggable target potentially relevant for the improvement of cognitive deficits associated with Down syndrome.”

https://www.ncbi.nlm.nih.gov/pubmed/30685352

https://www.sciencedirect.com/science/article/pii/S0969996118306855?via%3Dihub

“Endocannabinoid system, a target to improve cognitive disorders in models of Down syndrome” https://www.sciencedaily.com/releases/2019/02/190206115550.htm

“Endocannabinoid system, a target to improve cognitive disorders in models of Down syndrome” https://medicalxpress.com/news/2019-02-endocannabinoid-cognitive-disorders-syndrome.html

Cannabinoids (Marijuana) A Stem Cell Stimulator!!

Institute of Regenerative Medicine®“Some time ago a wrote a blog about the use of certain components of the marijuana plant. It was a fairly short blog which I will include here. More and more states are proposing the legalization of marijuana. There are numerous health claims about hemp oil which is a derivative of Cannabis. There may be merit to these claims possibly by the action of the Cannabis on stem cells. Below is the blog and I will expand more on it:

“We use to think that marijuana was bad for one’s health. Now we are not so sure about it. We need to clarify things a bit.
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries for a variety of uses. The use of Cannabis or Marijuana (scientific name is Cannabis sativa) came before we were able to discover the active portion or substrate. This substrate is called endocannabinoid system. The endocannabbinoid system has a number of components. The system consists of lipids, the receptors for the lipids and certain metabolic enzymes. The Cannabinoid signaling regulates cell proliferation, differentiation and it reduces cell aptosis or death. These receptors are found in the very early stages of life. The results of the Cannabinoid receptors depend upon molecular targets and cellular context involved. There are two main receptors which are called CB1 and CB2 receptors. These receptors seem to be involved in neural degeneration. They seem to be involved in all three germ layer formations. . CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. It is thought that the CB2 receptors may be most important. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. The developmental regulation of cannabinoid receptor expression and cellular/sub-cellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. Bone marrow and stem cells make endocannabinoids, these endocannabinoids interact with the cannabinoid receptors (Cannabinoid receptors have been found in nearly every cell in the human body). If cannabinoids can enhance stem cell migration and proliferation, this could be a powerful therapy. For instance, if you can increase the numbers and movement of stem cells to an injured tissue, you could vastly enhance the healing process. Lastly, the synthetic cannabinoid HU-210 is about 100-1000x times more potent than THC from Cannabis and this synthetic agent has been found to be neurogenic. Meaning that HU-210 can cause new neurons (brain cells) in the brain to form. However this study was done in rats…and humans are different from rats. Will I prescribe medical marijuana for my stem cell patients? At present I do not think I have enough information to make an intelligent decision about this. I suspect if some day I do prescribe this it will be some derivative of Cannabis. There are certainly some intriguing aspects of Cannabis but I feel the jury is still out. I suspect we will certainly hear more about this. Thanks Dr. P”

That was the blog I wrote some time ago. At this juncture I am getting closer to utilizing some component of Cannabis. I have further looked at the literature and there seems to be some very good science on the effect of Cannabis on stem cell workings. One of the intriguing aspects of the CB2 receptor is that it is found mostly in the immune system. At the University of South Carolina, a team discovered that THC could reduce the inflammation associated with autoimmune diseases by suppressing the activity of certain genes involved in the immune response. Its presence there interests scientists because the immune system triggers inflammation, and studies show marijuana can have an anti-inflammatory effect. When we start talking about the immune system we have a host of implications. We are aware that many diseases of aging may have some basis as an auto-immune disease. One of these that interests me is Osteoporosis. There may be both receptors at work. CB-2 works on the immune system while CB-1 is induced during osteogenic differentiation. As I have written in another blog, Very Small Embryonic Like Stem Cells may have a profound effect on the course of Osteoporosis. The next question is can we prime these cells additionally with Cannabis and take things to the next level. More to come I am sure. Dr. P.”

https://stcell.com/blogs/128/cannabinoids-marijuana-a-stem