Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation.

 

Image result for Horm Mol Biol Clin Investig

“The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena.

In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Moreover, cannabinoid agonists are able to reduce inflammatory response.

In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made.

Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.”

Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy.

 Image result for frontiers in molecular neuroscience

“Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use.

Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy.

Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties.

Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant.

In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA).

Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.”

https://www.ncbi.nlm.nih.gov/pubmed/29593494

https://www.frontiersin.org/articles/10.3389/fnmol.2018.00067/full

Regulation of Adipose Tissue Metabolism by the Endocannabinoid System.

Image result for trends in endocrinology and metabolism journal

“White adipose tissue (WAT) stores excess energy as triglycerides, and brown adipose tissue (BAT) is specialized in dissipating energy as heat. The endocannabinoid system (ECS) is involved in a broad range of physiological processes and is increasingly recognized as a key player in adipose tissue metabolism. High ECS tonus in the fed state is associated with a disadvantageous metabolic phenotype, and this has led to a search for pharmacological strategies to inhibit the ECS. In this review we present recent developments that cast light on the regulation of adipose tissue metabolism by the ECS, and we discuss novel treatment options including the modulation of endocannabinoid synthesis and breakdown enzymes.”

Modulation of central endocannabinoid system results in gastric mucosal protection in the rat.

Brain Research Bulletin

“Previous findings showed that inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), degrading enzymes of anandamide (2-AEA) and 2-arachidonoylglycerol (2-AG), reduced the nonsteroidal anti-inflammatory drug-induced gastric lesions.

The present study aimed to investigate: i./whether central or peripheral mechanism play a major role in the gastroprotective effect of inhibitors of FAAH, MAGL and AEA uptake, ii./which peripheral mechanism(s) may play a role in mucosal protective effect of FAAH, MAGL and uptake inhibitors.

Gastric mucosal damage was induced by acidified ethanol.

 

CONCLUSION:

Elevation of central endocannabinoid levels by blocking their degradation or uptake via stimulation of mucosal defensive mechanisms resulted in gastroprotective action against ethanol-induced mucosal injury. These findings might suggest that central endocannabinoid system may play a role in gastric mucosal defense and maintenance of mucosal integrity.”

https://www.ncbi.nlm.nih.gov/pubmed/29438780

https://www.sciencedirect.com/science/article/abs/pii/S0361923017306044

Glucocorticoid-endocannabinoid uncoupling mediates fear suppression deficits after early – Life stress.

Psychoneuroendocrinology

“Early-life stress (ELS) creates life-long vulnerability to stress-related anxiety disorders through altering stress and fear systems in the brain.

The endocannabinoid system has emerged as an important regulator of the stress response through a crosstalk with the glucocorticoid system, yet whether it plays a role in the persistent effects of ELS remains unanswered. By combining, behavioral, pharmacological and biochemical approaches in adult male rats, we examined the impact of ELS on the regulation of endocannabinoid function by stress and glucocorticoids.

These findings suggest that ELS results in an uncoupling of glucocorticoid-endocannabinoid signaling in the hippocampus, which, in turn, relates to alterations in stress regulation of memory recall. These data provide compelling evidence that ELS-induced deficits in the glucocorticoid-endocannabinoidcoupling following stress could predispose susceptibility to stress-related psychopathology.”

Altered hair endocannabinoid levels in mothers with childhood maltreatment and their newborns.

Biological Psychology

“The endocannabinoid (EC) system possesses anti-inflammatory properties and seems to be altered in trauma-exposed individuals.

In an intergenerational approach, this study investigated the link between childhood maltreatment (CM) experiences and alterations in the EC system.

Findings indicate altered EC levels during the last trimester of pregnancy in mothers with CM and their developing fetus, highlighting potential intergenerational effects from one generation to the other.”

Inhibition of fatty acid amide hydrolase by PF-3845 alleviates the nitrergic and proinflammatory response in rat hippocampus following acute stress.

Image result for International Journal of Neuropsychopharmacology

“Long term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase (iNOS) activity.

Similar to nitric oxide, endocannabinoids are synthesised on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity.

RESULTS:

The results demonstrate that pre-treatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in iNOS, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of NF-κB in the hippocampus.

CONCLUSIONS:

These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall anti-nitrosative and anti-inflammatory effect following acute stress exposure.”

“Inhibition of fatty acid amide hydrolase (FAAH) potentiates endocannabinoid activity and is hypothesized to have therapeutic potential for mood and anxiety disorders and pain”  https://www.ncbi.nlm.nih.gov/pubmed/29575526

Joint problems arising from lack of repair mechanisms: can cannabinoids help?

British Journal of Pharmacology banner

“Osteoarthritis (OA) is the most common disease of joints, which are complex organs where cartilage, bone and synovium cooperate to allow the range of movements. During the disease progression, the function of all three main components is jeopardized. Nevertheless, the involvement of each tissue in OA development is still not established and is the topic of the present review. The available OA therapies are symptomatic, largely targeting pain management rather than disease progression. The strong need to develop a treatment for cartilage degeneration, bone deformation and synovial inflammation has led to research on the involvement of the endocannabinoid system in the development of OA. The current review discusses the research on this topic to date and notes the advantages of exploiting endocannabinoid system modulation for cartilage, bone and synovium homeostasis, which could prevent the further progression of OA.”

https://www.ncbi.nlm.nih.gov/pubmed/29574720

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14204

“We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy. These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.”

Plasma anandamide concentrations are lower in children with autism spectrum disorder.

Molecular Autism logo

“Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restricted, stereotyped behaviors and impairments in social communication.

Although the underlying biological mechanisms of ASD remain poorly understood, recent preclinical research has implicated the endogenous cannabinoid (or endocannabinoid), anandamide, as a significant neuromodulator in rodent models of ASD. Despite this promising preclinical evidence, no clinical studies to date have tested whether endocannabinoids are dysregulated in individuals with ASD.

Here, we addressed this critical gap in knowledge by optimizing liquid chromatography-tandem mass spectrometry methodology to quantitatively analyze anandamide concentrations in banked blood samples collected from a cohort of children with and without ASD (N = 112).

FINDINGS:

Anandamide concentrations significantly differentiated ASD cases (N = 59) from controls (N = 53), such that children with lower anandamide concentrations were more likely to have ASD (p = 0.041). In keeping with this notion, anandamide concentrations were also significantly lower in ASD compared to control children (p = 0.034).

CONCLUSIONS:

These findings are the first empirical human data to translate preclinical rodent findings to confirm a link between plasma anandamide concentrations in children with ASD. Although preliminary, these data suggest that impaired anandamide signaling may be involved in the pathophysiology of ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/29564080

https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0203-y

The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis.

Issue Cover

“Clinical trials investigating the use of cannabinoid drugs for the treatment of intestinal inflammation are anticipated secondary to preclinical literature demonstrating efficacy in reducing inflammation.

We systematically reviewed publications on the benefit of drugs targeting the endo-cannabinoid system in intestinal inflammation.

 

CONCLUSIONS:

There is abundant preclinical literature demonstrating the anti-inflammatory effects of cannabinoid drugs in inflammation of the gut.”

https://www.ncbi.nlm.nih.gov/pubmed/29562280

https://academic.oup.com/ibdjournal/article-abstract/24/4/680/4944355?redirectedFrom=fulltext