Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

Journal of Pharmacology and Experimental Therapeutics

“An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type-1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly utilized for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in the presence or absence of CB1-related discriminative-stimulus effects in laboratory subjects. Squirrel monkeys (n=8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative-stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were non-surmountably antagonized by low doses of rimonabant. Additionally, FAAH- or MGL-inhibition revealed CB1-like subjective effects produced by AEA, but not 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28947487

http://jpet.aspetjournals.org/content/early/2017/09/25/jpet.117.244392

Targeting the Endocannabinoid System to Treat Sepsis

Image result for Signa Vitae

“Sepsis is a complex immune disorder that can affect the function of almost all organ systems in the body. This disorder is characterised by a malfunctioning immune response to an infection that involves both pro-inflammatory and immunosuppressive mediators. This leads to severe damage and failure of vital organs, resulting in patient death. Sepsis, septic shock, and systemic inflammatory response syndrome are the leading causes of mortality in surgical intensive care unit patients internationally.

The current lack of viable therapeutic treatment options for sepsis underscores our insufficient understanding of this complex disease. The endocannabinoid system, a key regulator of essential physiological functions including the immune system, has recently emerged as a potential therapeutic target for sepsis treatment. The endocannabinoid system acquires its name from the plant Cannabis Sativa, which has been used medically to treat a variety of ailments, as well as recreationally for centuries. Cannabis Sativa contains more than 60 active phytocannabinoids with the primary phytocannabinoid Δ9-tetrahydrocannabinol (THC), (6) activating both endogenous endocannabinoid receptors.

The endocannabinoid system represents a potential therapeutic target in sepsis due to the presence of cannabinoid receptors (CB2) on immune cells. In this review we discuss how various targets within the endocannabinoid system can be manipulated to treat the immune consequences of sepsis. One of the targets outlined are the endocannabinoid receptors and modulation of their activity through pharmacological agonists and antagonists. Another therapeutic target covered in this review is the modulation of the endocannabinoid degradative enzyme’s activity. Modulation of degradative enzyme activity can change the levels of endogenous cannabinoids thereby altering immune activity. Overall, activation of the CB2 receptors causes immunosuppression and can be beneficial during the hyperactivated immune state of sepsis, while suppression of the CB2 receptors may be beneficial during a hypoimmune septic state.

The endocannabinoid system modulates the immune response in experimental sepsis. Manipulating the endocannabinoid system may have potential therapeutic benefit in clinical sepsis where immune and inflammatory dysfunction can be detrimental. Multiple targets exist within the endocannabinoid system, e.g. the system can be targeted at the level of receptors by administration of synthetic compounds, similar to the endocannabinoids, which either increase or inhibit receptor activation to provide the desired therapeutic effect. Alternatively, the endogenous enzymes that degrade endocannabinoids or cannabinoid-like lipids can also be targeted in order to manipulate the levels of endocannabinoids. Proper identification of the septic stage is crucial to determine the adequate therapeutic response that will be most beneficial. Due to the biphasic nature of sepsis immunopathology, immune suppression through endocannabinoid modulation can help mitigate the hyper-immune response during the early septic state, while immune activation may be beneficial in later stages.” http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/

Targeting the Endocannabinoid System to Treat Sepsis

Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats.

Issue Cover

“There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing.

RESULTS:

Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism.

CONCLUSIONS:

Dronabinol’s effects on apneas were dependent on CB1 receptor activation, while dronabinol’s effects on REM sleep were CB receptor-independent.”

Re-visiting the Endocannabinoid System and Its Therapeutic Potential in Obesity and Associated Diseases.

 Current Diabetes Reports

“The purpose of the review was to revisit the possibility of the endocannabinoid system being a therapeutic target for the treatment of obesity by focusing on the peripheral roles in regulating appetite and energy metabolism.

Previous studies with the global cannabinoid receptor blocker rimonabant, which has both central and peripheral properties, showed that this drug has beneficial effects on cardiometabolic function but severe adverse psychiatric side effects. Consequently, focus has shifted to peripherally restricted cannabinoid 1 (CB1) receptor blockers as possible therapeutic agents that mitigate or eliminate the untoward effects in the central nervous system.

Targeting the endocannabinoid system using novel peripheral CB1 receptor blockers with negligible penetrance across the blood-brain barrier may prove to be effective therapy for obesity and its co-morbidities.

Perhaps the future of blockers targeting CB1 receptors will be tissue-specific neutral antagonists (e.g., skeletal muscle specific to treat peripheral insulin resistance, adipocyte-specific to treat fat excess, liver-specific to treat fatty liver and hepatic insulin resistance).”

https://www.ncbi.nlm.nih.gov/pubmed/28913816

https://link.springer.com/article/10.1007%2Fs11892-017-0924-x

Inhibition of Wnt/β-Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer.

 

“In a high percentage (≥85%) of both sporadic and familial adenomatous polyposis forms of colorectal cancer (CRC), the inactivation of the APC tumor suppressor gene initiates tumor formation and modulates the Wnt/β-Catenin transduction pathways involved in the control of cell proliferation, adhesion and metastasis.

Increasing evidence showed that the endocannabinoids control tumor growth and progression, both in vitro and in vivo.

We evaluated the effect of Rimonabant, a Cannabinoid Receptor 1 (CB1) inverse agonist, on the Wnt/β-Catenin pathway in HCT116 and SW48 cell lines carrying the genetic profile of metastatic CRC poorly responsive to chemotherapies.

Obtained data heavily supported the rationale for the use of cannabinoids in combined therapies for metastatic CRC harbouring activating mutations of β-Catenin.”

https://www.ncbi.nlm.nih.gov/pubmed/28916833

https://www.nature.com/articles/s41598-017-11688-x

Endocannabinoid mechanism in amphetamine-type stimulant use disorders: A short review.

Journal of Clinical Neuroscience Home

“Recent evidence shows that the endocannabinoid system is involved in amphetamine-type stimulants (ATS) use disorders. To elucidate the role of the endocannabinoid system in ATS addiction, we reviewed results of studies using cannabinoid receptor agonists, antagonists as well as knockout model.

The endocannabinoid system seems to play a role in reinstatement and relapse of ATS addiction and ATS-induced psychiatric symptoms. The molecular mechanisms of this system remains unclear, the association with dopamine system in nucleus accumbens is most likely involved. However, the function of the endocannabinoid system in anxiety and anti-anxiety effects induced by ATS is more complicated.

These findings suggest that the endocannabinoid system may play an important role in the mechanism of ATS addiction and provide new idea for treating ATS addiction.”

https://www.ncbi.nlm.nih.gov/pubmed/28912087

http://www.jocn-journal.com/article/S0967-5868(17)30989-X/fulltext

The role of cannabinoid receptors in renal diseases.

Image result for Curr Med Chem journal

“Chronic kidney disease (CKD) remains a major challenge for Public Health systems and corresponds to the replacement of renal functional tissue by extra-cellular matrix proteins such as collagens and fibronectin. There is no efficient treatment to date for CKD except nephroprotective strategies.

The cannabinoid system and more specifically the cannabinoid receptors 1 (CB1) and 2 (CB2) may represent a new therapeutic target in CKD.

Our review will first focus on the current state of knowledge regarding the cannabinoid system in normal renal physiology and in various experimental nephropathies, especially diabetes.  We will review the data obtained in models of diabetes and obesity as well as in nonmetabolic models of renal fibrosis and emphasizes the promising role of CB1 blockers and CB2 agonists in the development of renal disease and fibrosis. Next, we will review the current state of knowledge regarding the cellular pathways involved in renal fibrogenesis and renal injury.

Overall, this review will highlight the therapeutic potential of targeting the cannabinoid receptors in CKD and diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/28901271

The FAAH inhibitor URB597 suppresses hippocampal maximal dentate afterdischarges and restores seizure-induced impairment of short and long-term synaptic plasticity.

“Synthetic cannabinoids and phytocannabinoids have been shown to suppress seizures both in humans and experimental models of epilepsy.

However, they generally have a detrimental effect on memory and memory-related processes. Here we compared the effect of the inhibition of the endocannabinoid (eCB) degradation versus synthetic CB agonist on limbic seizures induced by maximal dentate activation (MDA) acute kindling. Moreover, we investigated the dentate gyrus (DG) granule cell reactivity and synaptic plasticity in naïve and in MDA-kindled anaesthetised rats.

We found that both the fatty acid amide hydrolase (FAAH) inhibitor URB597 and the synthetic cannabinoid agonist WIN55,212-2 displayed AM251-sensitive anti-seizure effects. WIN55,212-2, dose-dependently (0.5-2 mg/kg, i.p.) impaired short-term plasticity (STP) and long-term potentiation (LTP) at perforant path-DG synapses in naïve rats. Strikingly, URB597 (1 mg/kg, i.p.) was devoid of any deleterious effects in normal conditions, while it prevented seizure-induced alterations of both STP and LTP.

Our evidence indicates that boosting the eCB tone rather than general CB1 activation might represent a potential strategy for the development of a new class of drugs for treatment of both seizures and comorbid memory impairments associated with epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/28894217

https://www.nature.com/articles/s41598-017-11606-1

Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice.

 Image result for Inflammopharmacology.

“Several works have shown that triterpenes induce peripheral antinociception by activation of cannabinoid receptors and endocannabinoids; besides, several research groups have reported activation of cannabinoid receptors in peripheral antinociception.

The aim of this study was to assess the involvement of the cannabinoid system in the antinociceptive effect induced by tingenone against hyperalgesia evoked by prostaglandin E2 (PGE2) at peripheral level.

The results suggest that tingenone induced a peripheral antinociceptive effect via cannabinoidreceptor activation. Therefore, this study suggests a pharmacological potential for a new analgesic drug.”

https://www.ncbi.nlm.nih.gov/pubmed/28889355

The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models.

ijms-logo

“Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.”

https://www.ncbi.nlm.nih.gov/pubmed/28880200

http://www.mdpi.com/1422-0067/18/9/1916