Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus.

 Scientific Reports

“Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Staphylococcal biofilms are associated with increased antimicrobial resistance and are generally less affected by host immune factors. Therefore, there is an urgent need for novel agents that not only aim at multidrug-resistant pathogens, but also ones that will act as anti biofilms. In the present study, we investigated the antimicrobial activity of the endocannabinoid (EC) anandamide (AEA) and the endocannabinoid-like (EC-like), arachidonoyl serine (AraS) against methicillin resistant S. aureus strains (MRSA). We observed a strong inhibition of biofilm formation of all tested MRSA strains as well as a notable reduction of metabolic activity of pre-formed MRSA biofilms by both agents. Moreover, staphylococcal biofilm-associated virulence determinants such as hydrophobicity, cell aggregation and spreading ability were altered by AEA and AraS. In addition, the agents were able to modify bacterial membrane potential. Importantly, both compounds prevent biofilm formation by altering the surface of the cell without killing the bacteria. Therefore, we propose that EC and EC-like compounds may act as a natural line of defence against MRSA or other antibiotic resistant bacteria. Due to their anti biofilm action these agents could also be a promising alternative to antibiotic therapeutics against biofilm-associated MRSA infections.”

https://www.ncbi.nlm.nih.gov/pubmed/30523307

https://www.nature.com/articles/s41598-018-35793-7

“Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.”  https://www.ncbi.nlm.nih.gov/pubmed/30120078

“Antimicrobial Activity of Cannabis sativa L.”  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123

“Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).” https://www.ncbi.nlm.nih.gov/pubmed/19969046

“Antimicrobial studies of the leaf of cannabis sativa L.”   https://www.ncbi.nlm.nih.gov/pubmed/16414764

The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target.

Prostaglandins, Leukotrienes and Essential Fatty Acids Home

“The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief review, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cellular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.”

https://www.ncbi.nlm.nih.gov/pubmed/30553404

https://www.plefa.com/article/S0952-3278(18)30176-5/fulltext

An Analysis of Endocannabinoid Concentrations and Mood Following Singing and Exercise in Healthy Volunteers.

Image result for frontiers in behavioral neuroscience “The euphoric feeling described after running is, at least in part, due to increased circulating endocannabinoids (eCBs). eCBs are lipid signaling molecules involved in reward, appetite, mood, memory and neuroprotection.

The aim of this study was to investigate whether activities other than running can increase circulating eCBs.

Nine healthy female volunteers (mean 61 years) were recruited from a local choir. Circulating eCBs, haemodynamics, mood and hunger ratings were measured before and immediately after 30 min of dance, reading, singing or cycling in a fasted state.

Singing increased plasma levels of anandamide (AEA) by 42% (P < 0.05), palmitoylethanolamine (PEA) by 53% (P < 0.01) and oleoylethanolamine (OEA) by 34% (P < 0.05) and improved positive mood and emotions (P < 0.01), without affecting hunger scores.

Dancing did not affect eCB levels or hunger ratings, but decreased negative mood and emotions (P < 0.01).

Cycling increased OEA levels by 26% (P < 0.05) and tended to decrease how hungry volunteers felt, without affecting mood.

Reading increased OEA levels by 28% (P < 0.01) and increased the desire to eat.

Plasma AEA levels were positively correlated with how full participants felt (P < 0.05). Plasma OEA levels were positively correlated with positive mood and emotions (P < 0.01). All three ethanolamines were positively correlated with heart rate (HR; P < 0.0001).

These data suggest that activities other than running can increase plasma eCBs associated with changes in mood or appetite. Increases in eCBs may underlie the rewarding and pleasurable effects of singing and exercise and ultimately some of the long-term beneficial effects on mental health, cognition and memory.”

https://www.ncbi.nlm.nih.gov/pubmed/30534062

https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full

Cannabinoid-1 Receptor Antagonism Improves Glycemic Control and Increases Energy Expenditure via Sirt1/mTORC2 and AMPK Signaling.

Publication cover image

“Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure.

Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver.

CONCLUSION: peripheral CB1 R blockade in obese mice improves glycemic control via the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation via LKB1/AMPK signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/30506571

https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.30364

Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans.

Image result for frontiers in molecular biosciences

“Endocannabinoid peptides, or “pepcans,” are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator. These findings open the way to structure-driven design of selective peptide modulators of CB1.”

https://www.ncbi.nlm.nih.gov/pubmed/30505835

https://www.frontiersin.org/articles/10.3389/fmolb.2018.00100/full

Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance.

Physiology & Behavior

“Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance. Despite no significant differences in body weight among groups, chronic exposure to low-level LPS altered hepatic endocannabinoid signaling, increased inflammation, and impaired insulin sensitivity and insulin clearance. CB1 inhibition significantly attenuated LPS signaling, which attenuated LPS-induced metabolic alterations. Therefore, we concluded that CB1 contributes to LPS-mediated inflammation and insulin resistance, suggesting that blocking CB1 signaling may have therapeutic benefits in reducing inflammation-induced metabolic abnormalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30502357

https://www.sciencedirect.com/science/article/abs/pii/S0031938418304190?via%3Dihub

The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.

 Journal of Neurotrauma cover image“Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG that binds to both CB1 and CB2 receptors 1 hr after traumatic brain injury in mice attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors, with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats, subjected to closed head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of TNF-alpha production, increased synaptogenesis and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.”

https://www.ncbi.nlm.nih.gov/pubmed/30489198

https://www.liebertpub.com/doi/10.1089/neu.2018.6063

Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats.

 Image result for international journal of neuropsychopharmacology

“Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine-seeking behavior.

The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats.

RESULTS:

JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. Neither JZL184 nor URB597 reinstated methamphetamine-seeking behavior when administered alone. In the elevated plus-maze test, rats that were in withdrawal from methamphetamine self-administration spent less time in the open arms. JZL184 ameliorated the decrease in time spent in the open arms.

CONCLUSION:

We showed that JZL184 reduced both the cue- and stress-induced reinstatement of methamphetamine-seeking and anxiety-like behaviors in rats that had self-administered methamphetamine. It was suggested that a decrease in 2-arachidonoylglycerol in the brain could drive the reinstatement of methamphetamine-seeking and anxiety-like behaviors.”

https://www.ncbi.nlm.nih.gov/pubmed/30481332

https://academic.oup.com/ijnp/advance-article/doi/10.1093/ijnp/pyy086/5210886

Cannabinoids as Regulators of Neural Development and Adult Neurogenesis

“Neurogenesis plays an indispensable role in the formation of the nervous system during development. The discovery that the adult brain still maintains neurogenic niches that allow the continued production of new cells after birth has changed the field of neuroscience. It has also opened a new venue of opportunities for the treatment of central nervous system disorders related to neuronal loss. This chapter has reviewed the studies showing that genetic or pharmacological manipulation of cannabinoid receptors (CB1 and CB2) or the enzymes responsible for endocannabinoid metabolism modify/regulate cell proliferation and neurogenesis during development and in the adult brain. A better characterization of the mechanisms involved in these effects could contribute to the development of new therapeutic alternatives to neurodegenerative and psychiatric disorders.”

https://link.springer.com/chapter/10.1007/978-3-319-49343-5_6?fbclid=IwAR1yxGqvrq_9Zva3HLEqjh2WrNRTxPN6Hy_IO8l2IN8v9BCNBG2jDks9N1w

Cannabinoids for Treating Cardiovascular Disorders: Putting Together a Complex Puzzle.

Image result for j microsc ultrastruct

“Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders.

The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews.

It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response.

Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia.

Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30464888