The endocannabinoid signaling system in cancer

Image result for trends in pharmacological sciences“Changes in lipid metabolism are intimately related to cancer. Several classes of bioactive lipids play roles in the regulation of signaling pathways involved in neoplastic transformation and tumor growth and progression.

The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancer pathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer. We also discuss the enzyme MAGL, a key player in endocannabinoid metabolism that was recently recognized as a marker of tumor lipogenic phenotype.”

https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(13)00044-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614713000448%3Fshowall%3Dtrue

Medical Use of Cannabinoids.

“Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30374797

https://link.springer.com/article/10.1007%2Fs40265-018-0996-1

Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats.

Image result for frontiers in neuroscience

“Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss.

The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD -, and on the density of synaptic proteins.

Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ).

This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.”

“Altogether, our results showed, for the first time, that the administration of an endocannabinoid can prevent cognitive, synaptic and histopatological AD-like alterations induced by STZ, thus prompting endocannabinoids as a candidate therapeutic target in AD.”  https://www.frontiersin.org/articles/10.3389/fnins.2018.00653/full

Endocannabinoid Virodhamine is an Endogenous Inhibitor of Human Cardiovascular CYP2J2 Epoxygenase.

 Biochemistry

“The human body contains endogenous cannabinoids (endocannabinoids) that elicit similar effects as Δ9-tetrahydrocanabinol, the principal bioactive component of cannabis.

The endocannabinoid virodhamine (O-AEA) is the constitutional isomer of the well-characterized cardioprotective and anti-inflammatory endocannabinoid anandamide (AEA).

The chemical structures of O-AEA and AEA contain arachidonic acid (AA) and ethanolamine, however AA in O-AEA is connected to ethanolamine via an ester linkage whereas AA in AEA is connected through an amide linkage. We show that O-AEA is found at 9.6 fold higher levels than AEA in porcine left ventricle and is involved in regulating blood pressure and cardiovascular function.

On a separate note, the cytochrome P450 (CYP) epoxygenase CYP2J2 is the most abundant CYP in the heart where it catalyzes the metabolism of AA and AA-derived eCBs to bioactive epoxides that are involved in diverse cardiovascular functions. Herein, using competitive binding studies, kinetic metabolism measurements, molecular dynamics and wound healing assays we have shown that O-AEA is an endogenous inhibitor of CYP2J2 epoxygenase.

Together, the role of O-AEA as an endogenous eCB inhibitor of CYP2J2 may provide a new mode of regulation to control the activity of cardiovascular CYP2J2 in vivo and suggests a potential cross talk between the cardiovascular endocannabinoids and cytochrome P450 system.”

https://www.ncbi.nlm.nih.gov/pubmed/30285425

https://pubs.acs.org/doi/10.1021/acs.biochem.8b00691

Bortezomib And Endocannabinoid/Endovanilloid System: A Synergism In Osteosarcoma.

Pharmacological Research

“Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents.

Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration.

A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction.

Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect.

The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes.

CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation.

EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism.

We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance.

These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30267762

https://www.sciencedirect.com/science/article/abs/pii/S1043661818310387

Role of the endocannabinoid system in drug addiction.

Biochemical Pharmacology

“Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches.

The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction.

Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction.

The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction.

However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped.

Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors.

Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.”

https://www.ncbi.nlm.nih.gov/pubmed/30217570

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303952

Endocannabinoids in the treatment of gasytrointestinal inflammation and symptoms.

 Current Opinion in Pharmacology

“The evolving policies regarding the use of therapeutic Cannabis have steadily increased the public interest in its use as a complementary and alternative medicine in several disorders, including inflammatory bowel disease.

Endocannabinoids represent both an appealing therapeutic strategy and a captivating scientific dilemma.

Results from clinical trials have to be carefully interpreted owing to possible reporting-biases related to cannabinoids psychotropic effects. Moreover, discriminating between symptomatic improvement and the real gain on the underlying inflammatory process is often challenging.

This review summarizes the advances and latest discovery in this ever-changing field of investigation, highlighting the main limitations in the current use of these drugs in clinical practice and the possible future perspectives to overcome these flaws.”

https://www.ncbi.nlm.nih.gov/pubmed/30218940

https://www.sciencedirect.com/science/article/pii/S1471489218300183?via%3Dihub

Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history.

Journal of Ethnopharmacology

“Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor.

AIM OF THE STUDY:

The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent.

RESULTS AND CONCLUSIONS:

A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.”

https://www.ncbi.nlm.nih.gov/pubmed/30205181

https://www.sciencedirect.com/science/article/pii/S0378874118316611?via%3Dihub

ANTINOCICEPTIVE TOLERANCE TO NSAIDS PARTIALLY MEDIATED VIA ENDOCANNABINOIDS IN ANTERIOR CINGULATE CORTEX OF RATS.

Image result for Georgian Med News

“Pain is characterized as a complex experience, dependent not only on the regulation of nociceptive sensory systems but also on the activation of mechanisms that control emotional processes in limbic brain areas.

Non-opioid, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used analgesics in the treatment of not-severe pain. We have recently shown that repeated doses result in tolerance to these drugs like opioids.

Here we investigated the central brain mechanisms of non-opioid induced antinociception in the non-acute pain models of rats, such as the ‘formalin test’ and a relation between administration of NSAIDs in the limbic brain area, – the anterior cingulated cortex (ACC), – and the endocannabinoid system.

The present data support the notion that endocannabinoids’ CB1 receptor contributes in part to antinociceptive effects of NSAIDs and probably involved in activation of the descending opioid modulatory system of pain.”

The Endocannabinoid/Cannabinoid Receptor 2 System Protects Against Cisplatin-Induced Hearing Loss.

Image result for frontiers in cellular neuroscience

“Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis.

In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss.

These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.”

https://www.ncbi.nlm.nih.gov/pubmed/30186120

https://www.frontiersin.org/articles/10.3389/fncel.2018.00271/full