Endocannabinoids in Body Weight Control.

pharmaceuticals-logo

“Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing.

Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis.

Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects.

At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism.

Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands.

To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/29849009

http://www.mdpi.com/1424-8247/11/2/55

Mechanistic Potential and Therapeutic Implications of Cannabinoids in Nonalcoholic Fatty Liver Disease.

medicines-logo

“Nonalcoholic fatty liver disease (NAFLD) is comprised of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). It is defined by histologic or radiographic evidence of steatosis in the absence of alternative etiologies, including significant alcohol consumption, steatogenic medication use, or hereditary disorders.

NAFLD is now the most common liver disease, and when NASH is present it can progress to fibrosis and hepatocellular carcinoma. Different mechanisms have been identified as contributors to the physiology of NAFLD; insulin resistance and related metabolic derangements have been the hallmark of physiology associated with NAFLD.

The mainstay of treatment has classically involved lifestyle modifications focused on the reduction of insulin resistance. However, emerging evidence suggests that the endocannabinoid system and its associated cannabinoid receptors and ligands have mechanistic and therapeutic implications in metabolic derangements and specifically in NAFLD.

Cannabinoid receptor 1 antagonism has demonstrated promising effects with increased resistance to hepatic steatosis, reversal of hepatic steatosis, and improvements in glycemic control, insulin resistance, and dyslipidemia. Literature regarding the role of cannabinoid receptor 2 in NAFLD is controversial.

Exocannabinoids and endocannabinoids have demonstrated some therapeutic impact on metabolic derangements associated with NAFLD, although literature regarding direct therapeutic use in NAFLD is limited. Nonetheless, the properties of the endocannabinoid system, its receptors, substrates, and ligands remain a significant arena warranting further research, with potential for a pharmacologic intervention for a disease with an anticipated increase in economic and clinical burden.”

https://www.ncbi.nlm.nih.gov/pubmed/29843404

http://www.mdpi.com/2305-6320/5/2/47

Palmitoylethanolamide as adjunctive therapy for autism: Efficacy and safety results from a randomized controlled trial.

 Journal of Psychiatric Research Home

“Inflammation as well as glutamate excitotoxicity have been proposed to participate in the propagation of autism. Palmitoylethanolamide (PEA) is an endocannabinoid proven to prevent glutamatergic toxicity and inhibit inflammatory responses simultaneously.

The present randomized, parallel group, double-blind placebo-controlled trial is the first study depicted to probe the efficacy of co-treatment with risperidone and PEA over 10 weeks in children with autism.

Seventy children (aged 4-12 years) with autism and moderate to severe symptoms of irritability were randomly assigned to two treatment regimens. The study outcomes were measured using the Aberrant Behavior Checklist-Community Edition (ABC-C). At trial endpoint (week 10), combination of PEA and risperidone had superior efficacy in ameliorating the ABC-irritability and hyperactivity/noncompliance symptoms (Cohen’s d, 95% confidence interval (CI) = 0.94, 0.41 to 1.46, p = 0.001) compared with a risperidone plus placebo regimen. Interestingly, effect of combination treatment on hyperactivity symptoms was also observed at trial midpoint (week 5) but with a smaller effect size (d = 0.53, p = 0.04) than that at the endpoint (d = 0.94, p = 0.001). Meanwhile, there was a trend toward significance for superior effect of risperidone plus PEA over risperidone plus placebo on inappropriate speech at trial endpoint (d = 0.51, p = 0.051). No significant differences existed between the two treatment groups for the other two ABC-C subscales (lethargy/social withdrawal and stereotypic behavior).

The findings suggest that PEA may augment therapeutic effects of risperidone on autism-related irritability and hyperactivity. Future studies are warranted to investigate whether PEA can serve as a stand-alone treatment for autism.”

https://www.ncbi.nlm.nih.gov/pubmed/29807317

https://www.journalofpsychiatricresearch.com/article/S0022-3956(17)31405-X/fulltext

The role of lipid signaling in the progression of malignant melanoma.

Cancer and Metastasis Reviews

“In the past decades, a vast amount of data accumulated on the role of lipid signaling pathways in the progression of malignant melanoma, the most metastatic/aggressive human cancer type. Genomic studies identified that PTEN loss is the leading factor behind the activation of the PI3K-signaling pathway in melanoma, mutations of which are one of the main resistance mechanisms behind target therapy failures. On the other hand, illegitimate expressions of megakaryocytic genes p12-lipoxyganse, cyclooxygenase-2, and phosphodiestherase-2/autotaxin (ATX) are mostly involved in the regulation of motility signaling in melanoma through various G-protein-coupled bioactive lipid receptors. Furthermore, endocannabinoid signaling can also be a novel paracrine survival factor in melanoma. Last but not least, prenylation inhibitors acting even on mutated small GTP-ases, such as NRAS of melanoma may offer novel therapeutic opportunities. As regards melanoma, the most effective therapy nowadays is immunotherapy, with the resistance mechanisms also possibly involving the lipid signaling activities of melanoma cells, which further supports the idea of their being therapeutic targets.”

EFFECT OF ENDOCANNABINOID SIGNALLING ON CELL FATE: LIFE, DEATH, DIFFERENTIATION AND PROLIFERATION OF BRAIN CELLS.

British Journal of Pharmacology banner

“Cell fate events are regulated by different endogenous developmental factors such as cell microenvironment, external or remote signals and epigenetic regulation. Among the many regulatory factors, endocannabinoid associated signalling pathways are known to lead several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert its modulatory actions in health and pathological conditions. Endocannabinoid signalling can promote cell survival acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) while can either have a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate to control cell survival/cell death decisions depending on the cell type and its environment.”

https://www.ncbi.nlm.nih.gov/pubmed/29797438

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14369

Endocannabinoid CB1 receptors are involved in antiepileptogenic effect of low frequency electrical stimulation during perforant path kindling in rats.

Epilepsy Research

“Administration of low-frequency electrical stimulation (LFS) at the kindling site has an antiepileptogenic effect. In the present study, we investigated the role of cannabinoid receptors type 1 (CB1) in mediating the inhibitory effects of LFS on the development of perforant path kindled seizures.

RESULTS:

Application of LFS had inhibitory effect on development of kindled seizures (kindling rate). Microinjection of AM281 (0.5 μg/μl) immediately after the last kindling stimulation (before LFS application) reduced the inhibitory effect of LFS on the kindling rate and suppressed the effects of LFS on potentiation (increasing the magnitude) of both population spike amplitude and population excitatory postsynaptic potential slope during kindling acquisition. AM281 pretreatment also prevented the effects of LFS on kindling-induced increase in early and late paired pulse depression. The higher dose of AM281 (2 μg/μl) failed to exert the effects observed with its lower dose (0.5 μg/μl). In addition, there was a decreased CB1 receptors immunostaining in kindled animals compared to control. However, application of LFS following kindling stimulations led to overexpression of CB1 receptors in the dentate gyrus.

CONCLUSION:

Obtained results showed that activation of overexpressed cannabinoid CB1 receptors by endogenous cannabinoids may have a role in mediating the inhibitory effect of LFS on perforant path kindled seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/29800824

https://www.sciencedirect.com/science/article/pii/S0920121117304291?via%3Dihub

Endocannabinoid system and pathophysiology of adipogenesis: current management of obesity.

“The endocannabinoids are now known as novel and important regulators of energy metabolism and homeostasis.

The endocrine functions of white adipose are chiefly involved in the control of whole-body metabolism, insulin sensitivity and food intake. Adipocytes produce hormones, such as leptin and adiponectin, that can improve insulin resistance or peptides, such as TNF-α, that elicit insulin resistance. Adipocytes express specific receptors, such as peroxisome proliferator-activated receptor (PPAR)-γ, which serve as adipocyte targets for insulin sensitizers such as thiazolidinediones.

Recently, endocannabinoids and related compounds were identified in human fat cells.

The endocannabinoid system consists primarily of two receptors, cannabinoid (CB)1 and CB2, their endogenous ligands termed endocannabinoids and the enzymes responsible for ligand biosynthesis and degradation.

The endocannabinoids 2-arachidonylglycerol and anandamide or N-arachidonoylethanolamine increase food intake and promote weight gain in animals. Rimonabant, a selective CB1 blocker, reduces food intake and body weight in animals and humans.”

Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.

Image result for cambridge university press

“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.

Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.

In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29789034

https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26

Novel therapeutic applications of cannabinoids in cancer disease

oatext

“The present review shows that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues.

The endocannabinoid system is an almost ubiquitous signalling system involved in the control of cell fate. Recent studies have investigated the possibility that drugs targeting the endocannabinoid system might be used to retard or block cancer growth.

The endocannabinoids have been shown to inhibit the growth of tumour cells in culture and animal models by modulating key cell signalling pathways. Therefore, the present review indicated that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues.

  • Triggering cell death, through a mechanism called apoptosis
  • Stopping cells from dividing
  • Preventing new blood vessels from growing into tumours
  • Reducing the chances of cancer cells spreading through the body, by stopping cells from moving or invading neighbouring tissue
  • Speeding up the cell’s internal ‘waste disposal machine’ – a process known as autophagy – which can lead to cell death

Furthermore, the novel therapeutic application of cannabinoids in cancer disease, described here, strongly support the idea that cannabinoids may induce benefical effect in cancer treatment.”

http://www.oatext.com/novel-therapeutic-applications-of-cannabinoids-in-cancer-disease.php

Cannabinoids as a Promising Therapeutic Approach for the Treatment of Glioblastoma Multiforme: A Literature Review

Page Header

“Gliobalstoma multiforme (GBM) or grade 4 astrocytoma is the most malignant form of primary brain tumor. Treatment of glioblastoma is difficult despite of surgery, radiotherapy and chemotherapy. Patients with glioblastoma survive for less than 12 months.

Considering to biology function of glioblastoma, researchers have recently offered new therapeutic approaches such as cannabinoid therapy for glioblastoma.

Cannabinoids are active compounds of Cannabis sativa that operate in the body similar to endogenous canabinoids –the endocannabinoids- through cell surface receptors.

It is interesting that cannabinoids could exert a wide spectrum from antiproliferative effects in condition of the cell culture, animal models of glioblastoma and clinical trials.

As a result, Cannabinoids seem to modulate intracellular signaling pathways and the endoplasmic reticulum stress response in glioma cells.

Those play antitumoral effects through apoptosis induction and inhibition of glioblastoma angiogenesis.

The goal of this study was to discuss cannabinoid therapy and also what cellular mechanisms are involved in the tumoricidal effect of the cannabinoids.

In this review article, we will focus on cannabinoids, their receptor dependent functional roles against glioblastoma acccording to growth, angiogenesis, metastasis, and future purposes in exploring new possible therapeutic opportunities.”

http://journals.sbmu.ac.ir/Neuroscience/article/view/13655