WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms.

Image result for JNI journal of neuroinflammation

“Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases.

Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 inhibition on neuropathic pain has not been explored.

CONCLUSIONS:

This study reveals a novel mechanism for the antinociceptive effect of the 2-AG catabolic enzyme ABHD6 inhibitor WWL70. Understanding the interaction between endocannabinoid and eicosanoid pathways might provide a new avenue for the treatment of inflammatory and neuropathic pain.”

Do Cannabinoids Confer Neuroprotection Against Epilepsy? An Overview.

Cannabinoid-based medications provide not only relief for specific symptoms, but also arrest or delay of disease progression in patients with pain, multiple sclerosis, and other conditions. Although they also seem to hold potential as anticonvulsant agents, evidence of their efficacy in epilepsy is supported by several evidences.

The data reviewed herein lend support to the notion that the endocannabinoid signalling system plays a key modulation role in the activities subserved by the hippocampus, which is directly or indirectly affected in epilepsy patients.

The notion is supported by a variety of anatomical, electrophysiological, biochemical and pharmacological findings. These data suggest the need for developing novel treatments using compounds that selectively target individual elements of the endocannabinoid signalling system.” https://www.ncbi.nlm.nih.gov/pubmed/29290836

“The data reviewed herein demonstrate that cannabinoids provide neuroprotection against brain excitability. They seem to induce at least partial restoration of neurotransmitter dysfunction, inducing an anticonvulsant effect that may be the biological substrate of the complex neurochemical effects reported in experimental and clinical studies. A large body of data suggests that cannabinoids can be harnessed as antiepileptic agents. Finally, among patients with the Dravet syndrome, cannabidiol resulted in a greater reduction in convulsive-seizure frequency than placebo and was associated with higher rates of adverse events and it might reduce seizure frequency and might have an adequate safety profile in children and young adults with highly treatment-resistant epilepsy.”

Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts.

Image result for Arch Oral Biol.

“Approximately 65 million adults in the US have periodontitis, causing tooth loss and decreased quality of life.

 Cannabinoids modulate immune responses, and endocannabinoids are prevalent during oral cavity inflammation. Targets for intervention in periodontal inflammation are cannabinoid type 1 and 2 receptors (CB1R, CB2R), particularly CB2R because its levels increase during inflammation.

We previously demonstrated that SMM-189 (CB2R inverse agonist) decreased pro-inflammatory cytokine production in primary microglial cells. The hypothesis of this study was that cannabinoids anandamide (AEA), HU-308 (CB2R selective agonist), and SMM-189 decrease pro-inflammatory IL-6 and MCP-1 production by primary human periodontal ligament fibroblasts (hPDLFs) stimulated with P. gingivalis LPS, TNF-α, or IL-1β.

CONCLUSION:

The effective inhibition of LPS, TNF-α, IL-1β stimulated IL-6 and MCP-1 production by CB2R ligands in hPDLFs suggests that targeting the endocannabinoid system may lead to development of novel drugs for periodontal therapy, aiding strategies to improve oral health.”

https://www.ncbi.nlm.nih.gov/pubmed/29274621

Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats.

Image result for neuropsychopharmacology

“Exposure to a traumatic event may result in the development of Post-Traumatic Stress Disorder (PTSD).

Endocannabinoids are crucial modulators of the stress response, interfere with excessive retrieval and facilitate the extinction of traumatic memories. Exposure therapy, combined with pharmacotherapy, represents a promising tool for PTSD treatment.

We investigated whether pharmacological manipulations of the endocannabinoid system during extinction learning ameliorates the behavioral changes induced by trauma exposure.

Our findings suggest that drugs potentiating endocannabinoid neurotransmission may represent promising tools when combined to exposure-based psychotherapies in the treatment of PTSD.”

https://www.ncbi.nlm.nih.gov/pubmed/29265107

https://www.nature.com/articles/npp2017305

From “Azalla” to Anandamide: Distilling the Therapeutic Potential of Cannabinoids

Biological Psychiatry Home

“Cannabis has held a unique place in the hearts and minds of people since time immemorial: some have exalted its properties and considered it to be sacred; others have reviled it, considering it a root cause of social evil.

The Assyrians, who lived about 3000 years ago, documented the effects of cannabis on clay tablets. They referred to the plant according to its various uses: as “azalla,” when used as a medical agent; as hemp; and as “gan-zi-gun-nu”—“the drug that takes away the mind”   These seemingly contradictory properties—a substance that can be both a therapeutic agent and a corrupting psychoactive drug—have continued to puzzle us over the ensuing centuries.

As early as the 11th century, excessive cannabis use was suggested to be a cause of “moral degeneracy.”  On the other hand, the ostensible therapeutic value of cannabis was documented extensively in the early 19th century by Sir William B. O’Shaughnessy, an Irish physician working in Calcutta, India.

Given the critical role of the endocannabinoid system in modulating anxiety, it is clear that compounds that can modulate this system offer great promise as therapeutic agents for psychiatric disorders. It is therefore not surprising that the concept of medical marijuana is compelling to laypersons, clinicians, and researchers alike.

While there is not yet a robust body of literature supporting any specific psychiatric indication (despite the regulatory approval in some states of medical marijuana for specific psychiatric disorders), active lines of investigation of therapeutic targets within the endocannabinoid system offer hope for better treatment options.

The evidence at present suggests that the question of whether cannabinoids are good or bad is not dichotomous—it is likely both good and bad depending on the context of use, including dose, duration of exposure, and an individual’s genetic vulnerabilities. Therefore, the challenge that remains is to distill the good therapeutic effects of cannabinoids and thus weed out “gan-zi-gun-nu” from “azalla.””

http://www.biologicalpsychiatryjournal.com/article/S0006-3223(17)32207-2/fulltext

 

Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

Biochemistry (Moscow)

“Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/29223163

Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration.

brainsci-logo

“Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration.

Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [³H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining.

The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.”

https://www.ncbi.nlm.nih.gov/pubmed/29186065

http://www.mdpi.com/2076-3425/7/12/158

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges.

Image result for frontiers in immunology

“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (-)-trans9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.].

These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes.

The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc.

Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption.

Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.”   https://www.ncbi.nlm.nih.gov/pubmed/29176975

“Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases.”   https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet.

Epilepsia

“Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity.

Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures.

We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug’s effects.

SIGNIFICANCE:

MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/29171003

http://onlinelibrary.wiley.com/doi/10.1111/epi.13950/abstract?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+

Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects.

Cover image

“The cannabinoid system is composed of Gi/o protein-coupled cannabinoid type 1 receptor (CB1) and cannabinoid type 2 (CB2) receptor and endogenous compounds. The CB1 receptor is widely distributed in the central nervous system (CNS) and it is involved in the regulation of common physiological functions. At the neuronal level, the CB1 receptor is mainly placed at GABAergic and glutamatergic axon terminals, where it modulates excitatory and inhibitory synapses. To date, the involvement of CB2 receptor in the regulation of neurotransmission in the CNS has not been clearly shown. The majority of noradrenergic (NA) cells in mammalian tissues are located in the locus coeruleus (LC) while serotonergic (5-HT) cells are mainly distributed in the raphe nuclei including the dorsal raphe nucleus (DRN). In the CNS, NA and 5-HT systems play a crucial role in the control of pain, mood, arousal, sleep-wake cycle, learning/memory, anxiety, and rewarding behaviour. This review summarizes the electrophysiological, neurochemical and behavioural evidences for modulation of the NA/5-HT systems by cannabinoids and the CB1 receptor. Cannabinoids regulate the neuronal activity of NA and 5-HT cells and the release of NA and 5-HT by direct and indirect mechanisms. The interaction between cannabinoid and NA/5-HT systems may underlie several behavioural changes induced by cannabis such as anxiolytic and antidepressant effects or side effects (e.g. disruption of attention). Further research is needed to better understand different aspects of NA and 5-HT systems regulation by cannabinoids, which would be relevant for their use in therapeutics.”

https://www.ncbi.nlm.nih.gov/pubmed/29169951

http://www.sciencedirect.com/science/article/pii/S0024320517306069