“Identification of the two major endogenous cannabinoid ligands, known as endocannabinoids, N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoyl-glycerol (2-AG), opened the way for the identification and isolation of other lipid congeners, all derivatives of fatty acids and related to the Endocannabinoid System. The nomenclature of this anandamide-type class of lipids is evolving as new species are discovered all the time. However, they each fall under the larger umbrella of lipids that are a conjugation of a fatty acid with an amine through and amide bond, which we will refer to as lipoamines. Specific subspecies of lipoamines that have been discovered are the N-acyl-ethanolamides (including AEA), N-acyl-dopamines, N-acyl-serotonins, N-acyl-GABA, N-acyl-taurines, and a growing number of N-acyl amino acids. Emerging data from multiple labs also show that monoacylglycerols (including 2-AG), COX-2 metabolites, and fatty acid esters of hydroxyl fatty acids are interconnected with these lipoamines at both the biosynthetic and metabolic levels. Understanding the molecular relatedness of these lipids is important for studying how they act as signaling molecules; however, a first step in this process hinges on advances in being able to accurately measure them.”
Tag Archives: endocannabinoids
Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels.
“Cannabidiol (CBD), the main nonpsychotomimetic compound from Cannabis sativa, inhibits experimental seizures in animal models and alleviates certain types of intractable epilepsies in patients.
Here we tested the hypothesis that CBD anticonvulsant mechanisms are prevented by cannabinoid (CB1 and CB2) and vanilloid (TRPV1) receptor blockers. We also investigated its effects on electroencephalographic (EEG) activity and hippocampal cytokines in the pentylenetetrazole (PTZ) model.
Pretreatment with CBD (60mg/kg) attenuated seizures induced by intraperitoneal, subcutaneous, and intravenous PTZ administration in mice. The effects were reversed by CB1, CB2, and TRPV1 selective antagonists (AM251, AM630, and SB366791, respectively). Additionally, CBD delayed seizure sensitization resulting from repeated PTZ administration (kindling). This cannabinoid also prevented PTZ-induced EEG activity and interleukin-6 increase in prefrontal cortex.
In conclusion, the robust anticonvulsant effects of CBD may result from multiple pharmacological mechanisms, including facilitation of endocannabinoid signaling and TRPV1 mechanisms. These findings advance our understanding on CBD inhibition of seizures, EEG activity, and cytokine actions, with potential implications for the development of new treatments for certain epileptic syndromes.”
https://www.ncbi.nlm.nih.gov/pubmed/28821005
http://www.epilepsybehavior.com/article/S1525-5050(17)30322-0/fulltext
A Review of the Therapeutic Antitumor Potential of Cannabinoids.
:
“The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment.
RESULTS:
Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of “cannabinoid sensitizers.” Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness.
CONCLUSIONS:
A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.”
Role of Endocannabinoids on Neuroinflammation in Autism Spectrum Disorder Prevention
Autism Spectrum Disorder (ASD) disease has become a mounting socio-economical alarm around the world. Neuroinflammtion had been shown in postmortem brain specimens from ASD patients.
The Endocannabinoids System (ES) consists of a family of locally produced, short-lived, endogenous, phospholipid-derived agonists (endocannabinoids) that control energy balance and body composition. The growing number of medical benefits of ES, such as their ability to regulate processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of ASD.
The complex nature of ASD advocates a multimodal drug approach that could protect from the various processes underlying neurodegeneration and thus, at minimum, delay the pathological process. The expected benefit from a chronic treatment aimed at stimulating the endocannabinoid system is a delayed progression of ASD: i.e., reduced inflammation, sustained potential for neurogenesis, and delayed memory impairment. Such results could lead to new therapeutic strategies that target the inflammation and the decline in neurogenesis associated ASD.”
Cannabinoid system of dorsomedial telencephalon modulates behavioral responses to noxious stimulation in the fish Leporinus macrocephalus.
“Fish dorsomedial telencephalon has been considered a pallial region homologous to mammals amygdala, being considered a possible substrate for nociception modulation in this animal group. The present study aimed to evaluate the participation of the cannabinoid system of Dm telencephalon on nociception modulation in the fish Leporinus macrocephalus. We demonstrated that cannabidiol microinjection in Dm telecephalon inhibits the behavioral nociceptive response to the subcutaneous injection of 3% formaldehyde, and this antinociception is blocked by previous treatment with AM251 microinjection. Furthermore, AM251 microinjection in Dm prior to restraint stress also blockades the stress-induced antinociception. These results reinforce the hypothesis that this pallial telencephalic structure has a pivotal role in nociception modulation in fish.”
https://www.ncbi.nlm.nih.gov/pubmed/28754268
http://www.sciencedirect.com/science/article/pii/S0031938417302299?via%3Dihub
Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine.
“Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.”
Effects of Centrally Administered Endocannabinoids and Opioids on Orofacial Pain Perception in Rats.
“Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia.
The specific effects of these compounds within orofacial region are largely unknown. In this study we tried to determine whether the increase of cannabinoid and opioid concentration in cerebrospinal fluid affects impulse transmission between the motor centers localized in the vicinity of the third and fourth cerebral ventricles.
We demonstrated that in the orofacial area analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by MOR and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand.
Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.”
https://www.ncbi.nlm.nih.gov/pubmed/28771697
http://onlinelibrary.wiley.com/doi/10.1111/bph.13970/abstract
Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2.
“The endocannabinoid (eCB) neurotransmitter system regulates diverse neurological functions including stress and anxiety, pain, mood, and reward. Understanding the mechanisms underlying eCB regulation is critical for developing targeted pharmacotherapies to treat these and other neurologic disorders.
Cellular studies suggest that the arachidonate eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are substrates for intracellular binding and transport proteins, and several candidate proteins have been identified. Initial evidence from our laboratory indicates that the lipid transport protein, sterol carrier protein 2 (SCP-2), binds to the eCBs and can regulate their cellular concentrations.
Here, we present methods for evaluating SCP-2 binding of eCBs and their application to the discovery of the first inhibitor lead molecules. Using a fluorescent probe displacement assay, we found SCP-2 binds the eCBs, AEA (Ki=0.68±0.05μM) and 2-AG (Ki=0.37±0.02μM), with moderate affinity. A series of structurally diverse arachidonate analogues also bind SCP-2 with Ki values between 0.82 and 2.95μM, suggesting a high degree of tolerance for arachidonic acid head group modifications in this region of the protein. We also report initial structure-activity relationships surrounding previously reported inhibitors of Aedis aegypti SCP-2, and the results of an in silico high-throughput screen that identified structurally novel SCP-2 inhibitor leads.
The methods and results reported here provide the basis for a robust probe discovery effort to fully elucidate the role of facilitated transport mediated by SCP-2 in eCB regulation and function.”
https://www.ncbi.nlm.nih.gov/pubmed/28750817
http://www.sciencedirect.com/science/article/pii/S007668791730174X?via%3Dihub
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder.
“Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety.
In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the United States, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology.
Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD.
Potential therapeutic implications of the reviewed literature are also discussed. Lastly, we propose that a state of endocannabinoid deficiency could represent a stress-susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.”
https://www.ncbi.nlm.nih.gov/pubmed/28745306
https://www.nature.com/npp/journal/vaop/naam/abs/npp2017162a.html
The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.
“The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen.
Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry.
In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues.”
https://www.ncbi.nlm.nih.gov/pubmed/28743542
http://linkinghub.elsevier.com/retrieve/pii/S0960076017301887