Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment

Mary Ann Liebert, Inc. publishers

We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome).

Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice.

The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.

In conclusion, the present study provides new insights into the role of endocannabinoid signaling in social behavior and validates FAAH as a novel therapeutic target for the social impairment of ASD.”

Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome

“Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain.

The results identify the endocannabinoid signalosome as a molecular substrate for fragile X syndrome, which might be targeted by therapy.”  http://www.nature.com/articles/ncomms2045

“Cannabis-like chemical combats chief genetic cause of autism” http://www.belfasttelegraph.co.uk/news/health/cannabislike-chemical-combats-chief-genetic-cause-of-autism-28867862.html#ixzz2DRLsbjJO

Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice.

 Image result for Oncotarget“Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.”

https://www.ncbi.nlm.nih.gov/pubmed/28380440

Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus.

Image result for molecular metabolism

“Phytocannabinoids, such as THC and endocannabinoids, are well known to promote feeding behavior and to control energy metabolism through cannabinoid type 1 receptors (CB1R). However, the underlying mechanisms are not fully understood.

Generally, cannabinoid-conducted retrograde dis-inhibition of hunger-promoting neurons has been suggested to promote food intake, but so far it has not been demonstrated due to technical limitations.

Our immunohistochemical and ultrastructural study demonstrates the morphological substrate for cannabinoid-conducted feeding behavior via retrograde dis-inhibition of hunger-promoting AgRP/NPY neurons.”

https://www.ncbi.nlm.nih.gov/pubmed/28377876

Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

Image result for Front Pharmacol.

“Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs.

Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy.

The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy.

Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.”

https://www.ncbi.nlm.nih.gov/pubmed/28373843

Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS.

Image result for neuropharmacology journal

“Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system with limited therapeutic options. While an increasing number of ALS patients can be linked to a small number of autosomal-dominantly inherited cases, most cases are termed sporadic. Both forms are clinically and histopathologically indistinguishable, raising the prospect that they share key pathogenic steps, including potential therapeutic intervention points.

The endocannabinoid system is emerging as a versatile, druggable therapeutic target in the CNS and its dysregulation is an early hallmark of neurodegeneration. Whether this is a defense mechanism or part of the pathogenesis remains to be determined.

The neuroprotective and anti-inflammatory endocannabinoid 2-arachidonoylglycerol (2-AG), which is degraded by monoacylglycerol lipase (MAGL), accumulates in the spinal cords of transgenic models of ALS. We tested the hypothesis that this 2-AG increase is a protective response in the low-copy SOD1G93A mouse model of ALS.

We show that oral application of the MAGL inhibitor KML29 delays disease onset, progression and survival. Furthermore, we could demonstrate that KML29 reduced proinflammatory cytokines and increased brain-derived neurotrophic factor (BDNF) expression levels in the spinal cord, the major site of neurodegeneration in ALS. Moreover, treatment of primary mouse neurons and primary mousecroglia with 2-AG confirmed the neuroprotective and anti-inflammatory action by increasing BDNF and arginase-1 and decreasing proinflammatory cytokines in vitro.

In summary, we show that elevating 2-AG levels by MAGL inhibition is a therapeutic target in ALS and demonstrate that the endocannabinoid defense mechanisms can be exploited therapeutically in neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28373073

Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice.

Image result for Pharmacol Biochem Behav.

“CB1 receptor antagonists have been shown to prevent acute and long-term behavioral effects of cocaine.

Here we evaluate the effectiveness of the CB1 receptor antagonist rimonabant to modify sensitized responses to cocaine.

Our findings add to the evidence that drugs targeting CB1 receptors are good candidates for the treatment of cocaine abuse and provide further insights into the mechanisms underlying endocannabinoid signaling within the brain reward system in the context of cocaine abuse.”

https://www.ncbi.nlm.nih.gov/pubmed/28366798

Activation of CB1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries.

Regulatory, Integrative and Comparative Physiology

“Recent evidence suggests that endocannabinoids acting via cannabinoid CB1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature.

The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A2 analog (U46619), angiotensin II (Ang II), serotonin (5-HT) and phenylephrine which stimulate distinct Gq/11-protein coupled receptors (TP, AT1, 5-HT2 and α1-adrenergic) in isolated endothelium-intact human (hPAs) and rat pulmonary arteries (rPAs).

The present study shows the protective interaction between the endocannabinoid system and vasoconstriction to U46619 and Ang II in the human and rat pulmonary circulation. U46619 and Ang II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB1 receptor-dependent and/or -independent vasorelaxation, which in the negative feedback mechanism reduces later agonists-induced vasoconstriction.” https://www.ncbi.nlm.nih.gov/pubmed/28356298

http://ajpregu.physiology.org/content/early/2017/03/27/ajpregu.00324.2016

Anticancer effects of anandamide on head and neck squamous cell carcinoma cells via the production of receptor-independent reactive oxygen species.

Head & Neck

“The endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are considered promising potential anticancer agents. In this study, we examined the anticancer effects of AEA and 2-AG in head and neck squamous cell carcinoma (HNSCC) cell lines. Our results showed that AEA effectively inhibited proliferation of HNSCC cells whereas 2-AG did not. The anticancer effect of AEA seemed to be mediated by a receptor-independent mechanism. Inhibitors of AEA intracellular transportation and transfection of HNSCC cells with fatty acid amide hydrolase, a key enzyme in AEA metabolism, reversed AEA-dependent inhibition of cell proliferation. We found that cyclooxygenase-2 (COX-2) did not mediate the anticancer effects of AEA; instead we observed an increase in reactive oxygen species (ROS) production after AEA treatment. Moreover, antioxidants partially reversed AEA-dependent inhibition of cell proliferation. These findings suggest that AEA might have anticancer effects on HNSCC cells by mediating an increase in ROS levels through a receptor-independent mechanism.” https://www.ncbi.nlm.nih.gov/pubmed/24797795

http://onlinelibrary.wiley.com/doi/10.1002/hed.23727/abstract

Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.

Image result for Nat Commun

“Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.” https://www.ncbi.nlm.nih.gov/pubmed/28348378

“Natural cannabinoid found to play key role in anxiety. Stress-related mood and anxiety disorders affect millions of people in the United States. A new study examines the neurobiology behind these illnesses and finds that controlling a molecule that activates cannabinoid receptors can reduce the symptoms of anxiety.” http://www.medicalnewstoday.com/articles/316682.php

“Natural chemical helps brain adapt to stress”  https://www.sciencedaily.com/releases/2017/03/170329140945.htm