“Marijuana has been used to relieve pain for centuries.
The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago.”
“Marijuana has been used to relieve pain for centuries.
The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago.”
“Since antiquity cannabinoids have been used as a treatment for insomnia, and the first reports in western medical literature regarding the therapeutic utility and physiological effects of cannabis preparations note their hypnogenic properties.
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized.
We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system.
Our findings demonstrate that eCB signaling is necessary and sufficient for the control of sleep stability, but this neurotransmitter system is not necessary for sleep homeostasis.
“In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is now considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND).
Endocannabinoids exhibit neuroprotective and anti-inflammatory properties in several central nervous system (CNS) disease models, but their effects in HAND are poorly understood.
Results indicated a Tat-induced decrease in GABAergic neurotransmission, which was occluded by cannabinoids via a CB1R-related mechanism.
Understanding the relationship between Tat toxicity and endocannabinoid signaling has the potential to identify novel therapeutic interventions to benefit individuals suffering from HAND and other cognitive impairments.”
“The endocannabinoid system has been extensively investigated in experimental colitis and inflammatory bowel disease, but not in celiac disease, where only a single study showed increased levels of the major endocannabinoid anandamide in the atrophic mucosa. On this basis, we aimed to investigate anandamide metabolism in celiac disease by analyzing transcript levels (through quantitative real-time reverse transcriptase-polymerase chain reaction), protein concentration (through immunoblotting) and activity (through radioassays) of enzymes responsible for anandamide synthesis (N-acylphosphatidyl-ethanolamine specific phospholipase D, NAPE-PLD) and degradation (fatty acid amide hydrolase, FAAH) in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also, treated celiac biopsies cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our in vivo experiments showed that mucosal NAPE-PLD expression and activity are higher in untreated celiac patients than treated celiac patients and controls, with no significant difference between the latter two groups. In keeping with the in vivo data, the ex vivo activity of NAPE-PLD was significantly enhanced by incubation of peptic-tryptic digest of gliadin with treated celiac biopsies. On the contrary, in vivo mucosal FAAH expression and activity did not change in the three groups of patients, and accordingly, mucosal FAAH activity was not influenced by treatment with peptic-tryptic digest of gliadin. In conclusion, our findings provide a possible pathophysiological explanation for the increased anandamide concentration previously shown in active celiac mucosa.”
“Anandamide (AEA) is the prominent member of the endocannabinoid family and its biological action is mediated through the binding to both type-1 (CB1) and type-2 (CB2) cannabinoid receptors (CBR). The presence of AEA and CBR in the gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in patients with celiac disease.
In conclusion, our findings together with those published in a previous study, suggest that an abnormal modulation of the endocannabinoid system, both at CBR and AEA levels, may be implicated in the pathogenesis of celiac disease. Further studies are needed to ascertain whether targeting these changes might have a therapeutic role, at least in those patients who are no longer responsive to gluten-free diet.”
“Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway.
It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action.
These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and proliferation in diabetes.”
“The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the “endocannabinoids”), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling systems involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement is some of the most common neurological disorders.”
“Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.”
“Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids represent potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation.
Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms.
Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduced the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion.
Dual inhibition of FAAH and cyclooxygenase induced protection against both NSAID-induced gastrointestinal damage and intestinal inflammation.
Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects.
Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea.
In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.”
“There is good evidence that plant-derived and synthetic cannabinoids possess neuroprotective properties.
These compounds, as a result of effects upon CB(1) cannabinoid receptors, reduce the release of glutamate, and in addition reduce the influx of calcium following NMDA receptor activation.
The major obstacle to the therapeutic utilization of such compounds are their psychotropic effects, which are also brought about by actions on CB(1) receptors. However, synthesis of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, which also have neuroprotective properties, are increased under conditions of severe inflammation and ischemia, raising the possibility that compounds that prevent their metabolism may be of therapeutic utility without having the drawback of producing psychotropic effects.
In this review, the evidence indicating neuroprotective actions of plant-derived, synthetic and endogenous cannabinoids is presented. In addition, the pharmacological properties of endogenous anandamide-related compounds that are not active upon cannabinoid receptors, but which are also produced during conditions of severe inflammation and ischemia and may contribute to a neuroprotective action are reviewed.”