Sperm Release from the Oviductal Epithelium Depends on Ca2+ Influx Upon Activation of CB1 and TRPV1 by Anandamide.

“The oviduct acts as a functional sperm reservoir in many mammalian species. Both binding and release of spermatozoa from the oviductal epithelium are mainly modulated by sperm capacitation. Several molecules from oviductal fluid are involved in the regulation of sperm function.

Anandamide is a lipid mediator involved in reproductive physiology. Previously, we demonstrated that anandamide, through activation of the cannabinoid receptor type 1 (CB1), promotes sperm release from bovine oviductal epithelial cells, and through CB1 and the transient receptor potential vanilloid 1 (TRPV1), induces sperm capacitation.

Our results also suggest that a phospholypase C (PLC) might mediate the activation of CB1 and TRPV1 in sperm release from the bovine oviduct.

Therefore, our findings indicate that anandamide, through CB1 and TRPV1 activation, is involved in sperm release from the oviductal reservoir. An increase of sperm Ca2+ levels and the PLC activation might be involved in anandamide signaling pathway. ”

http://www.ncbi.nlm.nih.gov/pubmed/26129689

Roles for the endocannabinoid system in ethanol-motivated behavior.

“Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed.

The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system.

For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways.

Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients.

In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior.

Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.”

The endogenous cardiac cannabinoid system: a new protective mechanism against myocardial ischemia.

“The pharmacological (and recreational) effects of cannabis have been known for centuries.

However, it is only recently that one has identified two subtypes of G-protein-coupled receptors, namely CB1 and CB2-receptors, which mediate the numerous effects of delta9-tetrahydrocannabinol and other cannabinoids.

Logically, the existence of cannabinoid-receptors implies that endogenous ligands for these receptors (endocannabinoids) exist and exert a physiological role.

Hence, arachidonoylethanolamide (anandamide) and sn-2 arachidonoylglycerol, the first two endocannabinoids identified, are formed from plasma membrane phospholipids and act as CB1 and/or CB2 agonists.

The presence of both CB1 and CB2-receptors in the rat heart is noteworthy.

This endogenous cardiac cannabinoid system is involved in several phenomena associated with cardioprotective effects.

Endocannabinoids and synthetic cannabinoids, the latter through either CB1 or CB2-receptors, exert direct cardioprotective effects in rat isolated hearts.

The ability of cannabinoids to reduce infarct size has been confirmed in vivo in anesthetized mice and rats.

This latter effect appears to be mediated through CB2-receptors.

Thus, the endogenous cardiac cannabinoid system, through activation of CB2-receptors, appears to be an important mechanism of protection against myocardial ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/16618028

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

[Cardiovascular effects of cannabinoids].

“The psychoactive properties of cannabinoids, the biologically active constituents of the marijuana plant, have long been recognized. Recent research has revealed that cannabinoids elicit not only neurobehavioral, and immunological, but also profound cardiovascular effects.

Similar effects can be elicited by the endogenous ligand arachidonyl ethanolamine (anandamide) and 2-arachidonoyl-glycerol.

The biological effects of cannabinoids are mediated by specific receptors.

Two cannabinoid receptors have been identified so far: CB1-receptors are expressed by different cells of the brain and in peripheral tissues, while CB2-receptors were found almost exclusively in immune cells.

Through the use of a selective CB1 receptor antagonist and CB1 receptor-knockout mice the hypotensive and bradycardic effects of cannabinoids in rodents could be attributed to activation of peripheral CB1 receptors. In hemodynamic studies using the radioactive microsphere technique in anesthetized rats, cannabinoids were found to be potent CB1-receptor dependent vasodilators in the coronary and cerebrovascular beds.

Recent findings implicate the endogenous cannabinoid system in the pathomechanism of haemorrhagic, endotoxic and cardiogenic shock.

Finally, there is evidence that the extreme mesenteric vasodilation, portal hypertension and systemic hypotension present in advanced liver cirrhosis are also mediated by the endocannabinoid system.

These exciting, recent research developments indicate that the endogenous cannabinoid system plays an important role in cardiovascular regulation, and pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of pathological conditions.”

Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling.

“Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol.

Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor.

Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling.

Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist.

Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling.

Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors.

Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction.

Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.”

http://www.ncbi.nlm.nih.gov/pubmed/15005177

[Cardiac and vascular effects of cannabinoids: toward a therapeutic use?].

“Interest in cannabinoid pharmacology developed rapidly since the discovery of cannabinoids receptors and endocannabinoids. Modulation of this system is becoming a hot topic in cardiovascular pharmacology mainly at the light of recent findings.

Among them, cardiac effects of cannabinoids were described with respect to their probable participation to the well-studied preconditioning phenomenon.

Beneficial effects of post-infarction cannabinoids administration against ischemia-reperfusion injury were also reported.

Finally, pathological situations concerning the cardiovascular system and including brain ischemia, hemorrhagic and endotoxic shocks were reported to be linked with endocannabinoids.

However, the clinical use of cannabinoid receptors agonists or antagonists will depend on the development of non psychoactive compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/15828464

Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

“Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids.

Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

The endocannabinoid-CB2 receptor axis protects the ischemic heart at the early stage of cardiomyopathy.

“Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure.

Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction.

… the endocannabinoid-CB2 receptor axis plays a key role in cardioprotection during the initial phase of ischemic cardiomyopathy development.”

http://www.ncbi.nlm.nih.gov/pubmed/24980781

6B.09: EFFECT OF CANNABINOID RECEPTOR ACTIVATION ON ABERRANT MITOCHONDRIAL BIOENERGETICS IN HYPERTROPHIED CARDIAC MYOCYTES.

“We recently reported that activation of endocannabinoid receptors attenuates cardiac myocyte hypertrophy. Mitochondrial dysfunction has emerged as a critical determinant of aberrant myocyte energy production in cardiac hypertrophy. Thus, we determined endocannabinoid influence on mitochondrial function in the hypertrophied cardiac myocyte…

The cardioprotective actions of liganded cannabinoid receptors extend to the mitochondrial level. Therefore, a cannabinoid-based treatment for cardiac disease remains a potential therapeutic strategy that warrants further study.”

http://www.ncbi.nlm.nih.gov/pubmed/26102932