Simultaneous determination of endocannabinoids in murine plasma and brain substructures by surrogate-based LC-MS/MS: Application in tumor-bearing mice.

“The endocannabinoids (eCBs), N-arachidonoylethanolamine (anandamide, AEA) and 2-ararchidonylglycerol (2-AG) have been identified as main endogenous ligands for cannabinoid receptors.

Developing a sensitive and robust method to determine AEA and 2-AG has been shown to be essential to understand their effects in stress regulation and the pathogenesis of affective disorders.

Detection was performed in multiple reaction monitoring (MRM) mode with an electrospray ionization source operated in positive ion mode. The method was applied to assess plasma and brain eCBs in tumor-bearing mice.”

http://www.ncbi.nlm.nih.gov/pubmed/25863017

Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

“Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction.

The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans.

Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects.

Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25859226

http://www.thctotalhealthcare.com/category/addiction/

The role of the endocannabinoid system in pain.

“Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described.

The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways.

The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs).

The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells.

The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG).

Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells.

Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states.

In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.”

http://www.ncbi.nlm.nih.gov/pubmed/25846617

http://www.thctotalhealthcare.com/category/pain-2/

The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats.

“Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus.

It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/25843413

Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla.

“The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles.

Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin…

These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS.”

http://www.ncbi.nlm.nih.gov/pubmed/25839900

Endocannabinoid signaling in innate and adaptive immunity.

“The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity.

Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions.

Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation.

In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signaling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.”

http://www.ncbi.nlm.nih.gov/pubmed/25585882

Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation.

“Endocannabinoids are a family of lipid mediators that are involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood.

Here we examined the expression, localization and function of the enzyme diacylglycerol lipase (DAGLα), involved in the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG).

Cannabinoid (CB)1-deficient, wildtype control and C3H/HeJ mice, a genetically constipated model, were used…

DAGLα is expressed in the enteric nervous system and its inhibition reverses slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor mediated mechanisms.

Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.”

http://www.ncbi.nlm.nih.gov/pubmed/25684407

Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury.

“The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI).

Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage.

Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI.

We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.”

http://www.ncbi.nlm.nih.gov/pubmed/25721934

http://www.thctotalhealthcare.com/category/brain-trauma/

Endocannabinoid transport revisited.

“Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease.

The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol.

While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane.

In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed.

A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration.

We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport.”

http://www.ncbi.nlm.nih.gov/pubmed/25817877

Elevation of Plasma 2-Arachidonoylglycerol Levels in Alzheimer’s Disease Patients as a Potential Protective Mechanism against Neurodegenerative Decline.

“Growing evidence suggests that the endocannabinoid system is involved in the pathogenesis of Alzheimer’s disease (AD) and atherosclerosis.

The purpose of this study was to investigate the activation of the endocannabinoid system in AD in vivo and the possible intermediate role of atherosclerosis…

AD patients present high plasma 2-AG levels, also in relation to heart ischemic disease and cerebral leukoaraiosis.

This may be a protective mechanism hindering neurodegeneration, but it may also play an ambivalent role on cerebrovascular circulation.

The increase in 2-AG and PEA levels observed with ongoing pathological processes may differently modulate cognitive performances.”

http://www.ncbi.nlm.nih.gov/pubmed/25818503